Log in

Psoriasis-SCID-Maus-Modell

Psoriasis SCID-mouse model

  • Übersicht
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die Psoriasis ist durch einen komplexen Phänotyp, eine polygenetische Determinierung und eine multifaktorielle Genese charakterisiert. Mehrere sog. Psoriasistiermodelle konnten bislang lediglich einzelne Aspekte dieser Erkrankung reproduzieren. Erst ein xenogener Transplantationsansatz, wobei Haut von Patienten auf Mäuse mit einem schweren kombinierten Immundefekt (SCID) übertragen wird, erfüllte die Anforderungen an ein Psoriasismodell. Dieses sog. Psoriasis-SCID-Maus-Modell hat sich in den letzten 10 Jahren nicht nur als aussagekräftiger Ansatz für Pathogenesestudien, sondern auch als Instrument zur Medikamentenentwicklung erwiesen, dem ein hoher prädiktiver Wert zukommt.

Abstract

Psoriasis is characterized by a complex phenotype and pathogenesis along with polygenic determination. Several psoriasis animal models have only been able to incompletely reproduce the disease. A xenogeneic transplantation approach, grafting skin from psoriatic patients onto mice with a severe combined immunodeficiency (SCID), was the first to meet the criteria for a psoriasis model. During the last 10 years, this psoriasis SCID-mouse model not only allowed telling experiments focusing on pathogenetic aspects, but also proved being a powerful tool for drug discovery with a good predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Abb. 1a–c

Literatur

  1. Asadullah K, Sabat R, Friedrich M et al. (2004) Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr Drug Targets Inflamm Allergy 3:185–192

    Google Scholar 

  2. Boehncke WH (1996) Psoriasis and bacterial superantigens — formal or causal correlation? Trends Microbiol 4:485–489

    Google Scholar 

  3. Boehncke WH (1997) Psoriasis im Tiermodell. Hautarzt 48:707–713

    Google Scholar 

  4. Boehncke WH (1999) The SCID-hu xenogeneic transplantation model: complex but telling. Arch Dermatol Res 291:367–373

    Google Scholar 

  5. Boehncke WH (2004) The alpha-defensins HNP-1 and HNP-2 are dominant self-peptides presented by HLA class-II molecules in lesional psoriatic skin. Eur J Dermatol 14:142–145

    Google Scholar 

  6. Boehncke WH, Dressel D, Zollner TM, Kaufmann R (1996) Pulling the trigger on psoriasis. Nature 379:777

    Google Scholar 

  7. Boehncke WH, Hardt-Weinelt K, Nilsson H et al. (2001) Antagonistic effects of the staphylococcal enterotoxin a mutant, SEA(F47A/D227A), on psoriasis in the SCID-hu xenogeneic transplantation model. J Invest Dermatol 116:596–601

    Google Scholar 

  8. Boehncke WH, Kock M, Hard-Weinelt K, Wolter M (1999) The SCID-hu xenogenieic transplantation model allows screening of anti-psoriatic drugs. Arch Dermatol Res 291:104–106

    Google Scholar 

  9. Boehncke WH, Schön MP (2003) Interfering with leukocyte rolling — a promising therapeutic approach in inflammatory skin disorders? Trends Pharmacol Sci 24:49–52

    Google Scholar 

  10. Boehncke WH, Sterry W, Hainzl A et al. (1994) Psoriasiform architecture of murine epidermis overlying human psoriatic dermis transplanted onto SCID mice. Arch Dermatol Res 286:325–330

    Google Scholar 

  11. Boehncke WH, Zollner TM, Dressel D, Kaufmann R (1997) Induction of psoriasiform inflammation by a bacterial superantigen in the SCID-hu xenogeneic transplantation model. J Cutan Pathol 14:1–7

    Google Scholar 

  12. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Google Scholar 

  13. Boyman O, Hefti HP, Conrad C et al. (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199:731–736

    Google Scholar 

  14. Chaudhari U, Romano P, Mulcahy LD et al. (2001) Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357:1842–1847

    Google Scholar 

  15. Christophers E (1996) The immunopathology of psoriasis. Int Arch Allergy Immunol 110:199–206

    Google Scholar 

  16. Dam TN, Kang S, Nickoloff BJ, Voorhees JJ (1999) 1α,25-Dihydroxycholecalciferol and Cyclosporine supress induction an promote resolution of psoriasis in human skin grafts transplanted on to SCID mice. D J Invest Dermatol 113:1082–1989

    Google Scholar 

  17. Ellis CN, Varani J, Fisher GJ et al. (2000) Troglitazone improves psoriasis and normalizes models of proliferative skin disease. Arch Dermatol 136:609–616

    Google Scholar 

  18. Fehniger TA, Caligiuri MA (2001) Interleukin-15: biology and relevance to human disease. Blood 97:14–32

    Google Scholar 

  19. Gilhar A, David M, Ullmann Y et al. (1997) T-Lymphocyte dependence of psoriatic pathology in human psoriatic skin grafted to SCID mice. J Invest Dermatol 109:283–288

    Google Scholar 

  20. Gilhar A, Ullmann Y, Herner H et al. (2002) Psoriasis is mediated by a cutaneus defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J Invest Dermatol 119:384–391

    Google Scholar 

  21. Haftek M, Ortonne JP, Staquet MJ et al. (1981) Normal and psoriatic human skin grafts on „nude“ mice: morphological and immunohistochemical studies. J Invest Dermatol 76:48–52

    Google Scholar 

  22. Kaufmann R, Mielke V, Reimann J et al. (1993) Cellular and molecular composition of human skin in long-term xenografts on SCID mice. Exp Dermatol 2:209–216

    Google Scholar 

  23. Krueger GG, Manning DD, Malouf J, Ogden B (1975) Long-term maintenance of psoriatic human skin on congenitally athymic (nude) mice. J Invest Dermatol 64:307–312

    Google Scholar 

  24. Kupper TS (2003) Immunologic targets in psoriasis. N Engl J Med 349:1987–1990

    Google Scholar 

  25. Lebwohl M,, Tyring SK, Hamilton TK et al. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349:2004–2013

    Google Scholar 

  26. Leonardi CL, Powers JL, Matheson RT et al. (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349:2014–2022

    Google Scholar 

  27. Mueller W, Herrmann B (1979) Cyclosporin A for psoriasis. N Engl J Med 301:555

    Google Scholar 

  28. Nickoloff BJ, Kunkel SL, Burdick M, Strieter RM (1995) Severe combined immunodeficiency mouse and human psoriatic skin chimeras: validation of a new animal model. Am J Pathol 146:580–588

    Google Scholar 

  29. Nickoloff BJ, Wrone-Smith T (1999) Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 155:145–158

    Google Scholar 

  30. Raychaudhuri SP, Raychaudhuri SK (2004) Role of NGF and neurogenic inflammation in the pathogenesis of psoriasis. Prog Brain Res 146:433–437

    Google Scholar 

  31. Raychaudhuri SP, Sanyal M, Raychaudhuri SK et al. (2001) Severe combined immunodeficiency mouse-human skin chimeras: a unique animal model for the study of psoriasis and cutaneous inflamation. Br J Dermatol 144:931–939

    Google Scholar 

  32. Raychaudhuri SP, Sanyal M, Weltman H, Kundu-Raychaudhuri S (2004) K252a, a high-affinity nerve growth factor receptor blocker, improves psoriasis: an in vivo study using the severe combined immunodeficient mouse-human skin model. J Invest Dermatol 122:812–819

    Google Scholar 

  33. Schön MP (1999) Animal models of psoriasis — what can we learn from them? J Invest Dermatol 112:405–410

    Google Scholar 

  34. Schön MP, Boehncke WH (2005) Psoriasis — clinics, genetics, immunopathogenesis and therapeutic perspectives. N Engl J Med (in press)

  35. Schön MP, Detmar M, Parker CM (1997) Murine psoriasis-like disorder induced by naïve CD4+ T-cells. Nat Med 3:183–188

    Google Scholar 

  36. Schön MP, Krahn T, Schön M et al. (2002) Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nat Med 8:366–372

    Google Scholar 

  37. Villadsen LS, Schuurman J, Beurksens F et al. (2003) Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 112:1571–1580

    Google Scholar 

  38. Wrone-Smith T, Nickoloff BJ (1996) Dermal injection of immunocytes induces psoriasis. J Clin Invest 98:1878–1887

    Google Scholar 

  39. Zeigler M, Chi Y, Tumas DB et al. (2001) Anti-CD11a ameliorates disease in the human psoriatic skin-SCID mouse transplant model: comparison of antibody to CD11a with cyclosporine A and clobetasol propionate. Lab Invest 81:1253–1261

    Google Scholar 

  40. Zollner TM, Podda M, Pien C et al. (2002) Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCXID-hu model. J Clin Invest 109:671–679

    Google Scholar 

  41. Zollner TM, Renz H, Igney FH, Asadullah K (2004) Animal models of T-cell-mediated skin diseases. Bio Essays 26:693–696

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: W.-H. Boehncke ist als Referent für folgende pharmazeutische Unternehmen tätig: Biogen-Idec, Essex, Leo, Serono, Wylth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-H. Boehncke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, J., Kaufmann, R. & Boehncke, WH. Psoriasis-SCID-Maus-Modell. Hautarzt 57, 603–609 (2006). https://doi.org/10.1007/s00105-005-0990-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-005-0990-x

Schlüsselwörter

Keywords

Navigation