Log in

Methodisch-statistische Herausforderungen an die genombasierte Vorhersage von Erkrankungen

Methodological challenges for genome-based prediction of diseases

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Mittels der sich schnell entwickelnden Genotypisierungstechnologie wurden in den letzten Jahren viele genetische Faktoren entdeckt, die zur Pathogenese komplexer Krankheiten beitragen. Daraus hat sich das Ziel abgeleitet, diese Erkenntnisse zu nutzen, um auf Basis des individuellen genetischen Profils z. B. maßgeschneiderte Präventionsmaßnahmen oder Therapien anzubieten. Zu diesem Zweck werden genetische Tests entwickelt, die es erlauben sollen, Personen zu identifizieren, die aufgrund ihrer genetischen Prädisposition in Bezug auf eine bestimmte Krankheit zu einer Hochrisikogruppe gehören. Solche Tests basieren auf bekannten genetischen Risikofaktoren, die häufig in genomweiten Assoziationsstudien identifiziert wurden. Oft werden die Effektschätzer aus diesen Studien weiterverwendet, um ein genetisches Risikomaß zur Prognose eines Phänotyps zu entwickeln. Der vorliegende Beitrag beschreibt verschiedene statistisch-methodische Herausforderungen, die bei der Entwicklung eines genetischen Prädiktionsmodells berücksichtigt werden müssen: Ausgehend von dem Ziel, unverzerrte Effektschätzer zu erhalten, um geeignete genetische Risikoprädiktoren zu identifizieren, müssen genetische Risikomaße entwickelt und der prädiktive Wert eines neuen genetischen Tests etabliert werden. Diese zentralen Anforderungen bei der statistischen Risikoprädiktion in der Genetik werden in drei Abschnitten behandelt und abschließend unter Public-Health-Perspektive diskutiert.

Abstract

The rapidly develo** genoty** technology has led to the detection of many genetic factors that contribute to the pathogenesis of complex diseases. From this, the aim arose to use these results to offer tailored preventive measures or therapies based on an individual genetic profile. For this purpose, genetic tests are being developed that should allow us to identify individuals who belong to a high risk group with respect to a certain disease due to their genetic predisposition. Such tests are often based on known genetic risk factors that have been identified in genome-wide association studies. Typically, the effect estimates obtained from these studies are further used to construct a genetic risk measure to predict a certain phenotype. This paper describes several statistical and methodological challenges that must be coped with when establishing a genetic prediction model: Starting with the goal to obtain unbiased effect estimates to identify appropriate genetic risk predictors, genetic risk measures must be developed, and the predictive value of a new genetic test must be established. These key requirements of a statistical risk prediction in genetics will be discussed in three sections and finally discussed from a public health perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Janssens ACJW, Van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–R173

    Article  CAS  PubMed  Google Scholar 

  3. Burga A, Lehner B (2012) Beyond genotype to phenotype: why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J 279:3765–3775

    Article  CAS  PubMed  Google Scholar 

  4. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106:9362–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Laurie CC, Doheny KF, Mirel DB et al (2010) Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 34:591–602

    Article  PubMed Central  PubMed  Google Scholar 

  6. Turner S, Armstrong LL, Bradford Y et al (2011) Quality control procedures for genome-wide association studies. Curr Protoc in Hum Genet Chapter 1:Unit1.19

  7. Ziegler A, Konig IR, Thompson JR (2008) Biostatistical aspects of genome-wide association studies. Biom J 50:8–28

    Article  PubMed  Google Scholar 

  8. Moore JH, Ritchie MD (2004) The challenges of whole-genome approaches to common diseases. JAMA 291:1642–1643

    Article  CAS  PubMed  Google Scholar 

  9. Johnson RC, Nelson GW, Troyer JL et al (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics 11:724

    Article  PubMed Central  PubMed  Google Scholar 

  10. König IR (2011) Validation in genetic association studies. Brief Bioinform 12:253–258

    Article  PubMed  Google Scholar 

  11. Kraft P, Wacholder S, Cornelis MC et al (2009) Beyond odds ratios – communicating disease risk based on genetic profiles. Nat Rev Genet 10:264–269

    Article  CAS  PubMed  Google Scholar 

  12. Heid IM, Winkler TW, Grassmann F et al (2011) Wie groß sind die kleinen genetischen Risiken? Medgen 23:377–384

    Article  Google Scholar 

  13. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era – concepts and misconceptions. Nat Rev Genet 9:255–266

    Article  CAS  PubMed  Google Scholar 

  15. Manolio TA (2013) Bringing genome-wide association findings into clinical use. Nat Rev Genet 14:549–558

    Article  CAS  PubMed  Google Scholar 

  16. Park JH, Wacholder S, Gail MH et al (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42:570–575

    Article  CAS  PubMed  Google Scholar 

  17. Kruppa J, Ziegler A, Konig IR (2012) Risk estimation and risk prediction using machine-learning methods. Hum Genet 131:1639–1654

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kraft P (2009) Genetic risk prediction – are we there yet? N Engl J Med 360:1701–1703

    Article  CAS  PubMed  Google Scholar 

  19. Kooperberg C, Leblanc M, Obenchain V (2010) Risk prediction using genome-wide association studies. Genet Epidemiol 34:643–652

    Article  PubMed Central  PubMed  Google Scholar 

  20. Janssens ACJW, Aulchenko YS, Elefante S et al (2006) Predictive testing for complex diseases using multiple genes: fact or fiction? Genet Med 8:395–400

    Article  PubMed  Google Scholar 

  21. Che R, Motsinger-Reif AA (2012) A new explained-variance based genetic risk score for predictive modeling of disease risk. Stat Appl Genet Molec Biol 11(4):15

    Google Scholar 

  22. Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838

    Article  PubMed Central  PubMed  Google Scholar 

  23. Paynter NP, Chasman DI, Pare G et al (2010) Association between a literature-based genetic risk score and cardiovascular events in women. JAMA 303:631–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. De Jager PL, Chibnik LB, Cui J et al (2009) Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol 8:1111–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Karlson EW, Chibnik LB, Kraft P et al (2010) Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. Ann Rheum Dis 69:1077–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Carayol J, Tores F, Konig IR et al (2010) Evaluating diagnostic accuracy of genetic profiles in affected offspring families. Stat Med 29:2359–2368

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee SH, Van Der Werf JH, Hayes BJ et al (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4:e1000231

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ruderfer DM, Korn J, Purcell SM (2010) Family-based genetic risk prediction of multifactorial disease. Genome Med 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  29. Fernald GH, Capriotti E, Daneshjou R et al (2011) Bioinformatics challenges for personalized medicine. Bioinformatics 27:1741–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Janssens ACJW, Gwinn M, Khoury MJ (2010) Evaluation of predictive genetic tests for common diseases: bridging epidemiological, clinical, and public health measures. In: Khoury M, Bedrosian S, Gwinn M, Higgins J, Ioannidis J, Little J (Hrsg) Human Genome epidemiology. Oxford University Press, New York, S 450–455

  31. Schumacher M, Schulgen G (2008) Methodik klinischer Studien. Methodische Grundlagen der Planung, Durchführung und Auswertung. Springer, Heidelberg

    Book  Google Scholar 

  32. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

  33. Jostins L, Barrett JC (2011) Genetic risk prediction in complex disease. Hum Mol Genet 20:R182–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ten Kate LP (2005) Community genetics: a bridge between clinical genetics and public health. Community Genet 8:7–11

    Article  PubMed  Google Scholar 

  35. Khoury MJ, Jones K, Grosse SD (2006) Quantifying the health benefits of genetic tests: the importance of a population perspective. Genet Med 8:191–195

    Article  PubMed  Google Scholar 

  36. Fulda KG, Lykens K (2006) Ethical issues in predictive genetic testing: a public health perspective. J Med Ethics 32:143–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Stewart A, Gwinn M, Zimmern R et al (2010) Public health genomics. In: Ginsburg GS, Willard HF (Hrsg) Essentials of genomic and personalized medicine. Academic Press, London, S 245–255

  38. Dierickx K (2012) Genetic screening. In: Chadwick R (Hrsg) Encyclopedia of applied ethics. Academic Press, San Diego, S 480–487

  39. Grassmann F, Fritsche LG, Keilhauer CN et al (2012) Modelling the genetic risk in age-related macular degeneration. PLoS One 7:e37979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jakobsdottir J, Gorin MB, Conley YP et al (2009) Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 5:e1000337

    Article  PubMed Central  PubMed  Google Scholar 

  41. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  42. Wray NR, Goddard ME, Visscher PM (2008) Prediction of individual genetic risk of complex disease. Curr Opin Genet Dev 18:257–263

    Article  CAS  PubMed  Google Scholar 

  43. Haddow JE, Palomaki GE (2003) ACCE: a model process for evaluating data on emerging genetic tests. In: Khoury M, Little J, Burke W (Hrsg) Human genome epidemiology. Oxford University Press, New York, S 217–233

  44. Humphries SE, Cooper JA, Talmud PJ et al (2007) Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. Clin Chem 53:8–16

    Article  CAS  PubMed  Google Scholar 

  45. Zheng SL, Sun J, Wiklund F et al (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358:910–919

    Article  CAS  PubMed  Google Scholar 

  46. Van Hoek M, Dehghan, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Schulze TG, Akula N, Breuer R et al (2014) Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry 15:200–208

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Danksagung

Wir bedanken uns bei dem/der anonymen Gutachter/in für die hilfreichen Kommentare und Anmerkungen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronja Foraita.

Ethics declarations

Interessenkonflikt

R. Foraita, M. Jäger und I. Pigeot geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foraita, R., Jäger, M. & Pigeot, I. Methodisch-statistische Herausforderungen an die genombasierte Vorhersage von Erkrankungen. Bundesgesundheitsbl. 58, 131–138 (2015). https://doi.org/10.1007/s00103-014-2091-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-014-2091-4

Schlüsselwörter

Keywords

Navigation