Log in

Map** atrial fibrillation

An overview of potential mechanisms underlying atrial fibrillation

Elektrokardiographisches Map** von Vorhofflimmern

Eine Übersicht potenzieller Vorhofflimmermechanismen

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Mechanisms sustaining atrial fibrillation are yet to be clarified. This article focuses on milestones in the theory of atrial fibrillation and addresses the different leading hypotheses concerning atrial fibrillation mechanisms. We start off with electric potential originating from the pulmonary vein, which triggers atrial fibrillation, discuss classic activation map** and phase map** as well as computer models, which have contributed to the our understanding of atrial fibrillation, and end with new map** methods and studies highlighting the advantages and disadvantages of current mechanistic hypotheses. The technical evolution of map** atrial fibrillation has led to new insights into the potential mechanisms underlying atrial fibrillation. A comparison between methods is essential for understanding the advantages and disadvantages of each method when map** atrial fibrillation. Ultimately, the combination of several methods might shed light on the underlying mechanisms of atrial fibrillation and lead to a better understanding of atrial fibrillation and subsequently improve treatment of this condition.

Zusammenfassung

Welche Mechanismen Vorhofflimmern (VHF) aufrechterhalten, ist Gegenstand aktueller Forschung. Im vorliegenden Beitrag werden die essenziellen Fortschritte zum Thema Vorhofflimmermechanismen und die verschiedenen, derzeit führenden Hypothesen zur Aufrechterhaltung von Vorhofflimmern dargelegt. Der Artikel beginnt mit einem kurzen Überblick über elektrische Potenziale aus den Pulmonalvenen, welche das Vorhofflimmern auslösen, bietet Einsicht in das klassische Aktivierungs- sowie Phasenmap** und Computersimulationen, die zum Verständnis des Vorhofflimmerns beigetragen haben, und behandelt zuletzt neue Map**methoden und aktuelle Forschungsergebnisse, welche für bzw. gegen die mechanistischen Hypothesen sprechen. Die digitale Revolution führte zu neuen Erkenntnissen in Bezug auf die Mechanismen, die dem Vorhofflimmern zugrunde liegen. Der Vergleich verschiedener Methoden bezüglich ihrer Vor- und Nachteile ist essenziell, um Map**methoden zu kombinieren bzw. neue, bessere Map**methoden zu kreieren und so letztendlich die Behandlung des Vorhofflimmerns weiter zu optimieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyasaka Y, Barnes ME, Gersh BJ et al (2006) Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114(2):119–125. https://doi.org/10.1161/circulationaha.105.595140

    Article  PubMed  Google Scholar 

  2. Go AS, Hylek EM, Phillips KA et al (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285(18):2370–2375

    Article  CAS  Google Scholar 

  3. Rahman F, Kwan GF, Benjamin EJ (2014) Global epidemiology of atrial fibrillation. Nat Rev Cardiol 11(11):639–654. https://doi.org/10.1038/nrcardio.2014.118

    Article  PubMed  Google Scholar 

  4. Chugh SS, Havmoeller R, Narayanan K et al (2014) Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129(8):837–847. https://doi.org/10.1161/circulationaha.113.005119

    Article  PubMed  Google Scholar 

  5. Chen YJ, Chen SA, Chen YC et al (2001) Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation 104(23):2849–2854. https://doi.org/10.1161/hc4801.099736

    Article  CAS  PubMed  Google Scholar 

  6. Honjo H, Boyett MR, Niwa R et al (2003) Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins after treatment with ryanodine. Circulation 107(14):1937–1943. https://doi.org/10.1161/01.cir.0000062645.38670.bd

    Article  PubMed  Google Scholar 

  7. Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666. https://doi.org/10.1056/nejm199809033391003

    Article  CAS  PubMed  Google Scholar 

  8. Calkins H, Kuck KH, Cappato R et al (2012) 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14(4):528–606. https://doi.org/10.1093/europace/eus027

    Article  PubMed  Google Scholar 

  9. Narayan SM, Kazi D, Krummen DE, Rappel W‑J (2008c) Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation: a mechanism for the initiation of atrial fibrillation by premature beats. J Am Coll Cardiol 52(15):1222–1230

    Article  Google Scholar 

  10. Engelman ZJ, Trew ML, Smaill BH (2010) Structural heterogeneity alone is a sufficient substrate for dynamic instability and altered restitution. Circ Arrhythm Electrophysiol 3(2):195–203. https://doi.org/10.1161/circep.109.890459

    Article  PubMed  Google Scholar 

  11. Schricker AA, Lalani GG, Krummen DE et al (2014) Human atrial fibrillation initiates via organized rather than disorganized mechanisms. Circ Arrhythm Electrophysiol 7:816–824. https://doi.org/10.1161/CIRCEP.113.001289

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marrouche NF, Wilber D, Hindricks G et al (2014) Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311(5):498–506. https://doi.org/10.1001/jama.2014.3

    Article  CAS  PubMed  Google Scholar 

  13. Narayan SM, Bode F, Karasik PL, Franz MR (2002) Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation 106(15):1968–1973. https://doi.org/10.1161/01.cir.0000037062.35762.b4

    Article  PubMed  Google Scholar 

  14. Gonzales MJ, Vincent KP, Rappel WJ et al (2014) Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Europace 16(Suppl 4):iv3–iv10. https://doi.org/10.1093/europace/euu251

    Article  PubMed  PubMed Central  Google Scholar 

  15. Allessie MA, De Groot NMS, Houben RPM et al (2010) Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease longitudinal dissociation. Circ Arrhythmia Electrophysiol 3:606–615. https://doi.org/10.1161/CIRCEP.109.910125

    Article  Google Scholar 

  16. Steinberg JS, Shabanov V, Ponomarev D et al (2020) Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA 323(3):248–255. https://doi.org/10.1001/jama.2019.21187

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oral H, Pappone C, Chugh A et al (2006) Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med 354(9):934–941. https://doi.org/10.1056/NEJMoa050955

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang F, Antz M, Ernst S et al (2005) Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation 111(2):127–135. https://doi.org/10.1161/01.cir.0000151289.73085.36

    Article  PubMed  Google Scholar 

  19. Baldinger SH, Chinitz JS, Kapur S et al (2016) Recurrence of atrial arrhythmias despite persistent pulmonary vein isolation after catheter ablation for atrial fibrillation: a case series. JACC Clin Electrophysiol 2(6):723–731. https://doi.org/10.1016/j.jacep.2016.05.013

    Article  PubMed  Google Scholar 

  20. Vidmar D, Rappel WJ (2019) Extinction dynamics of spiral defect chaos. Phys Rev E 99(1-1):12407. https://doi.org/10.1103/PhysRevE.99.012407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67:200–220. https://doi.org/10.1016/0002-8703(64)90371-0

    Article  CAS  PubMed  Google Scholar 

  22. Allessie MALW, Bonke FIMJH (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. Grune & Stratton, Cardiac arrhythmias, New York

    Google Scholar 

  23. Spector PS, Correa de Sa DD, Tischler ES et al (2012) Ablation of multi-wavelet re-entry: general principles and in silico analyses. Europace 14(Suppl 5):v106–v111. https://doi.org/10.1093/europace/eus278

    Article  PubMed  Google Scholar 

  24. Zhao J, Hansen BJ, Csepe TA et al (2015) Integration of high resolution optical map** and 3D micro-CT imaging to resolve the structural basis of atrial conduction in the human heart. Circ Arrhythm Electrophysiol 8(6):1514–1517. https://doi.org/10.1161/CIRCEP.115.003064

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hansen BJ, Zhao J, Csepe TA et al (2015) Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical map** in explanted human hearts. Eur Heart J 36:2390–2401. https://doi.org/10.1093/eurheartj/ehv233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidenko JM, Kent PF, Chialvo DR et al (1990) Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci USA 87:8785–8789

    Article  CAS  Google Scholar 

  27. Gray R, Pertsov A, Jalife J (1998) Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78

    Article  CAS  Google Scholar 

  28. Gray RA, Jalife J, Panfilov AV et al (1995) Mechanisms of cardiac fibrillation. Science 270(5239):1222–1223 (author reply 1224–1225)

    Article  CAS  Google Scholar 

  29. Davidenko JM, Pertsov AV, Salomonsz R et al (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358):349–351. https://doi.org/10.1038/355349a0

    Article  CAS  PubMed  Google Scholar 

  30. Jalife J, Berenfeld O, Mansour M (2002) Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res 54(2):204–216

    Article  CAS  Google Scholar 

  31. Narayan SM, Krummen DE, Shivkumar K et al (2012) Treatment of atrial fibrillation by the ablation of localized sources: the conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation: CONFIRM trial. J Am Coll Cardiol 60(7):628–636

    Article  Google Scholar 

  32. Hansen BJ, Zhao J, Li N, Zolotarev A et al (2018) Human atrial fibrillation drivers resolved with integrated functional and structural imaging to benefit clinical map**. JACC Clin Electrophysiol 4(12):1501–1515. https://doi.org/10.1016/j.jacep.2018.08.024

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baykaner T, Rogers AJ, Meckler GL et al (2018) Clinical implications of ablation of drivers for atrial fibrillation: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol 11(5):e6119. https://doi.org/10.1161/circep.117.006119

    Article  PubMed  PubMed Central  Google Scholar 

  34. Narayan SM, Krummen DE, Shivkumar K et al (2012) Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol 60:628–636. https://doi.org/10.1016/j.jacc.2012.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haissaguerre M, Hocini M, Denis A et al (2014) Driver domains in persistent atrial fibrillation. Circulation 130(7):530–538. https://doi.org/10.1161/CIRCULATIONAHA.113.005421

    Article  PubMed  Google Scholar 

  36. Navara R, Leef G, Shenasa F et al (2018) Independent map** methods reveal rotational activation near pulmonary veins where atrial fibrillation terminates before pulmonary vein isolation. J Cardiovasc Electrophysiol 29(5):687–695. https://doi.org/10.1111/jce.13446

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haissaguerre M, Shah AJ, Cochet H et al (2016) Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J Physiol 594(9):2387–2398. https://doi.org/10.1113/JP270617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodrigo M, Climent AM, Hernandez-Romero I et al (2020) Noninvasive assessment of complexity of atrial fibrillation: correlation with contact map** and impact of ablation. Circ Arrhythm Electrophysiol 13(3):e7700. https://doi.org/10.1161/circep.119.007700

    Article  PubMed  PubMed Central  Google Scholar 

  39. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95(1):21–33. https://doi.org/10.1161/01.res.0000130529.18016.35

    Article  CAS  PubMed  Google Scholar 

  40. Bhatia NK, Rogers AJ, Krummen DE et al (2020) Termination of persistent atrial fibrillation by ablating sites that control large atrial areas. Europace. https://doi.org/10.1093/europace/euaa018

    Article  PubMed  PubMed Central  Google Scholar 

  41. Swerdlow M, Tamboli M, Alhusseini MI et al (2019) Comparing phase and electrographic flow map** for persistent atrial fibrillation. Pacing Clin Electrophysiol 42(5):499–507. https://doi.org/10.1111/pace.13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verma A, Sarkozy A, Skanes A et al (2018) Characterization and significance of localized sources identified by a novel automated algorithm during map** of human persistent atrial fibrillation. J Cardiovasc Electrophysiol 29(11):1480–1488. https://doi.org/10.1111/jce.13742

    Article  PubMed  Google Scholar 

  43. Wolf M, Tavernier R, Zeidan Z et al (2019) Identification of repetitive atrial activation patterns in persistent atrial fibrillation by direct contact high-density electrogram map**. J Cardiovasc Electrophysiol 30(12):2704–2712. https://doi.org/10.1111/jce.14214

    Article  PubMed  Google Scholar 

  44. Honarbakhsh S, Hunter RJ, Ullah W et al (2019) Ablation in persistent atrial fibrillation using Stochastic trajectory analysis of ranked signals (STAR) map** method. JACC Clin Electrophysiol 5(7):817–829. https://doi.org/10.1016/j.jacep.2019.04.007

    Article  PubMed  Google Scholar 

  45. Choudry S, Mansour M, Sundaram S et al (2020) RADAR: a multicenter food and drug administration investigational device exemption clinical trial of persistent atrial fibrillation. Circ Arrhythm Electrophysiol 13(1):e7825. https://doi.org/10.1161/CIRCEP.119.007825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qin M, Jiang WF, Wu SH et al (2020) Electrogram dispersion-guided driver ablation adjunctive to high-quality pulmonary vein isolation in atrial fibrillation of varying durations. J Cardiovasc Electrophysiol 31(1):48–60. https://doi.org/10.1111/jce.14268

    Article  PubMed  Google Scholar 

  47. Lee S, Sahadevan J, Khrestian CM et al (2015) Simultaneous Bi-atrial high density (510–512 electrodes) epicardial map** of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation 132(22):2108–2117. https://doi.org/10.1161/CIRCULATIONAHA.115.017007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zaman JAB, Sauer WH, Alhusseini MI et al (2018) Identification and characterization of sites where persistent atrial fibrillation is terminated by localized ablation. Circ Arrhythm Electrophysiol 11(1):e5258. https://doi.org/10.1161/circep.117.005258

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sommer P, Kircher S, Rolf S et al (2015) Successful repeat catheter ablation of recurrent longstanding persistent atrial fibrillation with rotor elimination as the procedural endpoint: a case series. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.12874

    Article  PubMed  Google Scholar 

  50. Willems S, Verma A, Betts TR et al (2019) Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density map**: UNCOVER AF trial. Circ Arrhythm Electrophysiol 12(7):e7233. https://doi.org/10.1161/circep.119.007233

    Article  PubMed  Google Scholar 

  51. Daoud EG, Zeidan Z, Hummel JD et al (2017) Identification of repetitive activation patterns using novel computational analysis of multielectrode recordings during atrial fibrillation and flutter in humans. JACC Clin Electrophysiol 3(3):207–216. https://doi.org/10.1016/j.jacep.2016.08.001

    Article  PubMed  Google Scholar 

  52. Calvo D, Rubin J, Perez D, Moris C (2017) Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/circep.117.005740

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brachmann JHJ, Wilber DJ, Sarver AE et al (2019) Prospective randomized comparison of rotor ablation vs conventional ablation for treatment of persistent atrial fibrillation—the REAFFIRM Trial [abstract S‑LBCT01-02]. Heart Rhythm Scientific Sessions 2019, https://www.abstractsonline.com/pp8/#!/5753/presentation/31210

  54. Verma A, Jiang CY, Betts TR et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372(19):1812–1822. https://doi.org/10.1056/NEJMoa1408288

    Article  PubMed  Google Scholar 

  55. Vogler J, Willems S, Sultan A et al (2015) Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial. J Am Coll Cardiol 66(24):2743–2752. https://doi.org/10.1016/j.jacc.2015.09.088

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Kowalewski.

Ethics declarations

Conflict of interest

C. Kowalewski declares that he has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalewski, C. Map** atrial fibrillation. Herz 46, 305–311 (2021). https://doi.org/10.1007/s00059-021-05045-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-021-05045-y

Keywords

Schlüsselwörter

Navigation