Log in

Effects of miniscrew-facilitated micro-osteoperforations on the rate of orthodontic tooth movement

A split-mouth, randomized controlled trial

Auswirkungen von Mini-Schrauben-unterstützten Mikro-Osteoperforationen auf die Geschwindigkeit kieferorthopädischer Zahnbewegungen

Eine randomisierte, kontrollierte Split-mouth-Studie

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present split-mouth randomized controlled trial was to evaluate the effects of miniscrew-facilitated micro-osteoperforations (MOPs) on the rate of orthodontic tooth movement during canine retraction.

Methods

A total of 20 young adult patients (mean age 16.5 years) with the indication for bilateral maxillary first premolar extraction were included in the study. The MOPs were randomly applied to either the right or left side of the mouth with miniscrews (1.5 mm width, 8 mm length) to the extraction area, 28 days apart. The canine distalization continued for 3 months. The closure of the extraction space was measured by using a digital analysis program on the pre- and postdigital study models for both the control and experiment sides.

Results

The mean rate of extraction space closure on the MOP side was 2.51 ± 1.41 mm and on the control side was 2.88 ± 1.32 mm. There was no statistically significant difference between the groups (p > 0.05).

Conclusion

Overall, we found that MOPs did not significantly affect the rate of orthodontic tooth movement during canine retraction.

Zusammenfassung

Zielsetzung

Ziel der vorliegenden randomisierten, kontrollierten Split-mouth-Studie war es, die Auswirkungen von Mini-Schrauben-unterstützten Mikro-Osteoperforationen (MOPs) auf die Geschwindigkeit der kieferorthopädischen Zahnbewegung während der Eckzahnretraktion zu untersuchen.

Methoden

Insgesamt 20 junge erwachsene Patienten (Durchschnittsalter 16,5 Jahre) mit der Indikation für eine bilaterale Extraktion der ersten Prämolaren im Oberkiefer wurden in die Studie aufgenommen. Die MOPs wurden nach dem Zufallsprinzip im Abstand von 28 Tagen entweder auf der rechten oder linken Seite des Mundes mit Minischrauben (1,5 mm breit, 8 mm lang) im Extraktionsbereich angebracht. Die Eckzahn-Distalisierung wurde für 3 Monate fortgesetzt. Der Lückenschluss des Extraktionsbereichs wurde mit Hilfe eines digitalen Analyseprogramms an den prä- und postdigitalen Studienmodellen sowohl für die Kontroll- als auch für die Versuchsseite gemessen.

Ergebnisse

Die durchschnittliche Geschwindigkeit des Extraktionsspaltverschlusses betrug auf der MOP-Seite 2,51 ± 1,41 mm und auf der Kontrollseite 2,88 ± 1,32 mm. Es gab keinen statistisch signifikanten Unterschied zwischen den Gruppen (p > 0,05).

Schlussfolgerung

Insgesamt ließ sich feststellen, dass MOPs keinen signifikanten Einfluss auf die Geschwindigkeit der kieferorthopädischen Zahnbewegung während der Eckzahnretraktion haben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  1. Bolat E (2019) Micro-osteoperforations. Current approaches in orthodontics. IntechOpen, London: https://doi.org/10.5772/intechopen.81419

    Book  Google Scholar 

  2. Aboalnaga AA, Salah Fayed MM, El-Ashmawi NA, Soliman SA (2019) Effect of micro-osteoperforation on the rate of canine retraction: a split-mouth randomized controlled trial. Prog Orthod 20(1):21. https://doi.org/10.1186/s40510-019-0274-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35:117–120. https://doi.org/10.1002/lsm.20076

    Article  PubMed  Google Scholar 

  4. Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, Khabensky I, Gart LP, Cisneros G, Alikhani M (2010) Cytokine expression and accelerated tooth movement. J Dent Res 89:1135–1141. https://doi.org/10.1177/0022034510373764

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, Corpodian C, Barrera LM, Alansari S, Khoo E, Teixeira C (2013) Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop 144(5):639–648. https://doi.org/10.1016/j.ajodo.2013.06.017

    Article  PubMed  Google Scholar 

  6. Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop 146(5):620–632. https://doi.org/10.1016/j.ajodo.2014.07.007

    Article  PubMed  Google Scholar 

  7. Aksakalli S, Calik B, Kara B, Ezirganli S (2016) Accelerated tooth movement with piezocision and its periodontal-transversal effects in patients with class II malocclusion. Angle Orthod 86(1):59–65. https://doi.org/10.2319/012215-49.1

    Article  PubMed  Google Scholar 

  8. Yi J, **ao J, Li H, Li Y, Li X, Zhao Z (2017) Effectiveness of adjunctive interventions for accelerating orthodontic tooth movement: a systematic review of systematic reviews. J Oral Rehabil 44(8):636–654. https://doi.org/10.1111/joor.12509

    Article  PubMed  Google Scholar 

  9. Alkebsi A, Al-Maaitah E, Al-Shorman H, Abu Alhaija E (2018) Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with class II malocclusion: a randomized controlled clinical trial. Am J Orthod Dentofacial Orthop 153(6):771–785. https://doi.org/10.1016/j.ajodo.2017.11.026

    Article  PubMed  Google Scholar 

  10. Bolat E, Esenlik E, Öncü M, Özgöçmen M, Avunduk MC, Yüksel Ö (2020) Evaluation of the effects of vitamins C and E on experimental orthodontic tooth movement. J Dent Res Dent Clin Dent Prospects 14(2):131–137. https://doi.org/10.34172/joddd.2020.0027

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shahabee M, Shafaee H, Abtahi M, Rangrazi A, Bardideh E (2020) Effect of micro-osteoperforation on the rate of orthodontic tooth movement—a systematic review and a meta-analysis. Eur J Orthod 42(2):211–221. https://doi.org/10.1093/ejo/cjz049

    Article  PubMed  Google Scholar 

  12. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G* power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    Article  PubMed  Google Scholar 

  13. Fattori L, Sendyk M, de Paiva JB, Normando D, Neto JR (2020) Micro-osteoperforation effectiveness on tooth movement rate and impact on oral health related quality of life: a randomized clinical trial. Angle Orthod 90(5):640–647. https://doi.org/10.2319/110819-707.1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mittal R, Attri S, Batra P, Sonar S, Sharma K, Raghavan S (2020) Comparison of orthodontic space closure using micro-osteoperforation and passive self-ligating appliances or conventional fixed appliances: a randomized controlled trial. Angle Orthod 90(5):634–639. https://doi.org/10.2319/111119-712.1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Motoyoshi M, Matsuoka M, Shimizu N (2007) Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg 36(8):695–699. https://doi.org/10.1016/j.ijom.2007.03.009

    Article  PubMed  Google Scholar 

  16. Kim JS, Kang SM, Seo KW, Nahm KY, Chung KR, Kim SH, Ahn JP (2015) Nanoscale bonding between human bone and titanium surfaces: osseohybridization. Biomed Res Int. https://doi.org/10.1155/2015/960410

    Article  PubMed  PubMed Central  Google Scholar 

  17. Damon DH (1998) The rationale, evolution and clinical application of the self-ligating bracket. Clin Orthod Res 1(1):52–61. https://doi.org/10.1111/ocr.1998.1.1.52

    Article  PubMed  Google Scholar 

  18. Scribante A, Sfondrini MF, Gatti S, Gandini P (2013) Disinclusion of unerupted teeth by mean of self-ligating brackets: effect of blood contamination on shear bond strength. Med Oral Patol Oral Cir Bucal 18(1):162–167. https://doi.org/10.4317/medoral.18246

    Article  Google Scholar 

  19. Fathimani M, Melenka GW, Romanyk DL, Toogood RW, Heo G, Carey JP, Major PW (2015) Development of a standardized testing system for orthodontic sliding mechanics. Prog Orthod 16:14. https://doi.org/10.1186/s40510-015-0087-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Köle H (1959) Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg 12(5):515–529. https://doi.org/10.1016/0030-4220(59)90153-7

    Article  PubMed  Google Scholar 

  21. Gantes B, Rathbun E, Anholm M (1990) Effects on the periodontium following corticotomyfacilitated orthodontics. Case reports. J Periodontol 61(4):234–238. https://doi.org/10.1902/jop.1990.61.4.234

    Article  PubMed  Google Scholar 

  22. Liou EJ, Huang CS (1998) Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofacial Orthop 114(4):372–382. https://doi.org/10.1016/S0889-5406(98)70181-7

    Article  PubMed  Google Scholar 

  23. Kişnişci RŞ, İşeri H, Tüz HH, Altug AT (2002) Dentoalveolar distraction osteogenesis for rapid orthodontic canine retraction. J Oral Maxillofac Surg 60(4):389–394. https://doi.org/10.1053/joms.2002.31226

    Article  PubMed  Google Scholar 

  24. Park YG, Kang SG, Kim SJ (2006) Accelerated tooth movement by corticision as an osseous orthodontic paradigm. Kinki Tokai Kyosei Shika Gakkai Gakujyutsu Taikai Sokai 48(6):6–15

    Google Scholar 

  25. Dibart S, Sebaoun JD, Surmenian J (2009) Piezocision: minimally invasive, periodontally accelerated orthodontic tooth movement procedure. Compend Contin Educ Dent 30(6):342–344

    PubMed  Google Scholar 

  26. Kundi I, Alam MK, Shaheed S (2020) Micro-osteo perforation effects as an intervention on canine retraction. Saudi Dent J 32(1):15–20. https://doi.org/10.1016/j.sdentj.2019.05.009

    Article  PubMed  Google Scholar 

  27. Ren Y, Maltha JC, Van’t Hof MA, Kuijpers-Jagtman AM (2003) Age effect on orthodontic tooth movement in rats. J Dent Res 82(1):38–42. https://doi.org/10.1177/154405910308200109

    Article  PubMed  Google Scholar 

  28. Usumi-Fujita R, Hosomichi J, Ono N, Shibutani N, Kaneko S, Shimizu Y, Ono T (2013) Occlusal hypofunction causes periodontal atrophy and VEGF/VEGFR inhibition in tooth movement. Angle Orthod 83(1):48–56. https://doi.org/10.2319/011712-45.1

    Article  PubMed  Google Scholar 

  29. Wilcko MT, Wilcko WM, Bissada NF (2008) An evidence-based analysis of periodontally accelerated orthodontic and osteogenic techniques: a synthesis of scientific perspectives. Semin Orthod 14(4):305–316. https://doi.org/10.1053/j.sodo.2008.07.007

    Article  Google Scholar 

  30. Babanouri N, Ajami S, Salehi P (2020) Effect of mini-screw-facilitated micro-osteoperforation on the rate of orthodontic tooth movement: a single-center, split-mouth, randomized, controlled trial. Prog Orthod 21(1):1–10. https://doi.org/10.1186/s40510-020-00306-8

    Article  Google Scholar 

  31. Yang C, Wang C, Deng F, Fan Y (2015) Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: a 3‑dimensional finite element analysis. Am J Orthod Dentofacial Orthop 148(3):457–465. https://doi.org/10.1016/j.ajodo.2015.03.032

    Article  PubMed  Google Scholar 

  32. Sivarajan S, Doss JG, Papageorgiou SN, Cobourne MT, Wey MC (2019) Mini-implant supported canine retraction with micro-osteoperforation: a split-mouth randomized clinical trial. Angle Orthod 89(2):183–189. https://doi.org/10.2319/011518-47.1

    Article  PubMed  Google Scholar 

  33. Attri S, Mittal R, Batra P, Sonar S, Sharma K, Raghavan S, Rai KS (2018) Comparison of rate of tooth movement and pain perception during accelerated tooth movement associated with conventional fixed appliances with micro-osteoperforations—a randomised controlled trial. J Orthod 45(4):225–233. https://doi.org/10.1080/14653125.2018.1528746

    Article  PubMed  Google Scholar 

  34. Feizbakhsh M, Zandian D, Heidarpour M, Farhad SZ, Fallahi HR (2018) The use of micro-osteoperforation concept for accelerating differential tooth movement. J World Fed Orthod 7(2):56–60. https://doi.org/10.1016/j.ejwf.2018.04.002

    Article  Google Scholar 

  35. Dibart S, Keser E, Nelson D (2015) Piezocision™-assisted orthodontics: past, present, and future. Semin Orthod 21(3):170–175. https://doi.org/10.1053/j.sodo.2015.06.003

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

EBG designed the study, drafted the manuscript and revised the article critically for important intellectual content. EK acquired, analyzed and interpreted the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ece Kınsız DDS.

Ethics declarations

Conflict of interest

E. Bolat Gümüş and E. Kınsız declare that they have no competing interests.

Ethical standards

The study procedures were approved by the Research Ethics Committee of the Faculty of Medicine, Akdeniz University (No. 745). Written informed consent was obtained from all participants before the commencement of the study. The study was carried out in accordance with the ethical rules of the Declaration of Helsinki, including all amendments and revisions. Consent to participate: Written informed consent was obtained from all individual participants or their legal guardians in the study. Consent for publication: Patients signed informed consent regarding publishing their data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and material

The data underlying this article will be shared on reasonable request to the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolat Gümüş, E., Kınsız, E. Effects of miniscrew-facilitated micro-osteoperforations on the rate of orthodontic tooth movement. J Orofac Orthop 84 (Suppl 2), 104–110 (2023). https://doi.org/10.1007/s00056-021-00371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00371-6

Keywords

Schlüsselwörter

Navigation