Log in

Frequent occurrence of triploid hybrids Festuca pratensis × F. apennina in the Swiss Alps

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

The occurrence of triploid hybrids in nature is scarce due to the so-called triploid block representing formation of nonviable progeny after mating diploid with tetraploid. Here we describe frequent presence of triploids originating from hybridization of diploid Festuca pratensis with tetraploid F. apennina in the Swiss Alps. F. pratensis is a forage grass grown in lowlands and up to 1800 m a.s.l., while F. apennina is a mountain grass found in elevations from 1100 to 2000 m a.s.l. In the overlap** zone these species often grow sympatrically and triploid hybrids have been observed. We show that elevation is the main factor in the distribution of plants with various ploidy levels. Diploids occupy lower elevations, while triploids predominate in the mid-elevation zones and tetraploids are the most frequent in higher elevations. Other factors, such as topography and soil composition probably have only marginal effects on the distribution of the plants with different ploidy levels. Triploids seem to be frequently formed in the Swiss Alps and crosses in both directions are involved in the formation of triploid hybrids. As shown by chloroplast DNA analysis, F. apennina more frequently serves as female. Our analysis suggests that in the mid-elevation zones, triploids have a higher level of competitiveness than both parents. Triploids can overgrow microhabitats to a much higher extent than tetraploids. Such frequent occurrence and local dominance of triploids can at least be partially explained by asexual reproduction. Using DNA markers, we show that triploids can disperse ramets of a single clone over a distance of at least 14.4 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: PK50 ©swisstopo

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agroscope (2015) Schweizerische Referenzmethoden der For­schungsanstalten Agroscope, Band 1: bodenuntersuchungen zur Düngeberatung, Ausgabe 2015. Agroscope, Zürich

    Google Scholar 

  • Aleza P, Juarez J, Hernandez M, Ollitrault P, Navarro L (2012) Implementation of extensive citrus triploid breeding programs based on 4X × 2X sexual hybridisations. Tree Genet Genom 8:1293–1306

    Article  Google Scholar 

  • Alix K, Gerard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62:1165–1183

    Article  Google Scholar 

  • Baird JH, Kopecký D, Lukaszewski AJ, Green RL, Bartoš J, Doležel J (2012) Genetic diversity of turf-type tall fescue using diversity arrays technology. Crop Sci 52:408–412

    Article  Google Scholar 

  • Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves R, Burdon JJ (eds) Ecology of biological invasions, an Australian perspective. Australian Academy of Sciences, Canberra, pp 21–33

    Google Scholar 

  • Boller B, Felder T, Kopecký D (2018) Tetraploid Festuca apennina is prone to produce triploid hybrid progeny when crossed with diploid Festuca pratensis. In: Brazauskas G et al (eds) Breeding grasses and protein crops in the era of genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-89578-9

    Chapter  Google Scholar 

  • Borrill M, Tyler BF, Morgan WG (1976) Studies in Festuca. 7. Chromosome atlas. 2. Appraisal of chromosome race distribution and ecology, including Festuca pratensis var. apennina (DeNot) Hack.—tetraploid. Cytologia 41:219–236

    Article  Google Scholar 

  • Budzakova M, Hodalova I, Mereda P, Somlyay L, Bisbing SM, Sibik J (2014) Karyological, morphological and ecological differentiation of Sesleria caerulea and S. tatrae in the Western Carpathians and adjacent regions. Preslia 86:245–277

    Google Scholar 

  • Clarke J, Chandrasekharan P, Thomas H (1976) Studies in Festuca. 9. Cytological studies of Festuca pratensis var. apennina (DeNot.) Hack. (2n = 28). Z Pflanzenzuchtg 77:205–214

    Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  Google Scholar 

  • Cushman KE, Snyder RG, Nagel DH, Gerard PD (2003) Yield and quality of triploid watermelon cultivars and experimental hybrids grown in Mississippi. Horttechnology 13:375–380

    Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  Google Scholar 

  • Eckert CG (2002) Effect of geographical variation in pollinator fauna on the mating system of Decodon verticillatus (Lythraceae). Int J Plant Sci 163:123–132

    Article  Google Scholar 

  • Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478

    Article  Google Scholar 

  • Grabherr G (2003) Alpine vegetation dynamics and climate change: a synthesis of long-term studies and observations. Alpine Divers Europe 167:399–409

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Gusmeroli F, Della Marianna G, Fava F, Monteiro A, Bocchi S, Parolo G (2013) Effects of ecological, landscape and management factors on plant species composition, biodiversity and forage value in Alpine meadows. Grass Forage Sci 68:437–447

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harberd DJ, Owen M (1969) Some experimental observations on clone structure of a natural population of Festuca rubra L. New Phytol 68:93–104

    Article  Google Scholar 

  • Hoshino Y, Miyashita T, Thomas TD (2011) In vitro culture of endosperm and its application in plant breeding: approaches to polyploidy breeding. Sci Hortic 130:1–8

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genoty**. Nucl Acids Res 29:e25

    Article  CAS  Google Scholar 

  • Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–113

    Article  CAS  Google Scholar 

  • Jonsdottir IS, Augner M, Fagerstrom T, Persson H, Stenstrom A (2000) Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography 23:402–412

    Article  Google Scholar 

  • Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J Ecol 90:360–370

    Article  Google Scholar 

  • Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009) Development and map** of DArT markers within the FestucaLolium complex. BMC Genom 10:473–483

    Article  Google Scholar 

  • Kopecký D, Bartoš J, Christelová P, Černoch V, Kilian A, Doležel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122:355–363

    Article  Google Scholar 

  • Kopecký D, Harper J, Bartoš J, Gasior D, Vrána J, Hřibová E, Boller B, Ardenghi NMG, Šimoníková D, Doležel J, Humphreys MW (2016) An increasing need for productive and stress resilient Festulolium amphiploids: what can be learnt from the stable genomic composition of Festuca pratensis subsp. apennina (De Not.) Hegi? Frontiers Env Sci 4:66

    Article  Google Scholar 

  • Lakshmi Sita G (1987) Triploids. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences. Springer, Dordrecht, vol 24–26

    Google Scholar 

  • Lammerts WE (1931) Interspecific hybridization in Nicotiana. XII. The amphidiploid rustica-paniculata hybrid; its origin and cytogenetic behavior. Genetics 16:191–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol 30:62–69

    Article  CAS  Google Scholar 

  • Loureiro I, Escorial MC, Chueca MC (2016) Pollen-mediated movement of herbicide resistance genes in Lolium rigidum. Plos One 11:6

    Article  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  CAS  Google Scholar 

  • Markgraf-Dannenberg I (1980) 4. Festuca L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 125–153

    Google Scholar 

  • Marques I, Draper D, López-Herranz ML, Garnatje T, Segarra-Moragues JG, Catalán P (2016) Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae). Sci Rep 6:36283

    Article  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants—evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  Google Scholar 

  • Novak SJ, Welfley AY (1997) Genetic diversity in the introduced clonal grass Poa bulbosa (Bulbous bluegrass). Northwest Sci 71:271–280

    Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Rognli OA, Nilsson NO, Nurminiemi M (2000) Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85:550–560

    Article  CAS  Google Scholar 

  • Rognli OA, Saha MC, Bhamidimarri S, van der Heijden S (2010) Fescues. Fodd Crops Amenity Grass 5:261–292

    Article  Google Scholar 

  • Saint-Yves A (1913) Les Festuca de la Section Eu-Festuca et leurs variations. Georg, Geneva. https://doi.org/10.5962/bhl.title.15432

    Book  Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  Google Scholar 

  • Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165

    Article  Google Scholar 

  • Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Nat 74:54–66

    Article  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91(861):337–354

    Article  Google Scholar 

  • Stebler FG (1904) Jahresbericht der Schweizerischen Samenuntersuchungs- und Kontrollstation Zürich. Schweiz Landw Jahrbuch 18:43–46

    Google Scholar 

  • Suda J (2002) New DNA ploidy level in Empetrum (Empetraceae) revealed by flow cytometry. Ann Bot Fenn 39(2):133–141

    Google Scholar 

  • Suzuki J-U, Herben T, Krahulec F, Štorchová H, Hara T (2006) Effects of neighbourhood structure and tussock dynamics on genet demography of Festuca rubra in a mountain meadow. J Ecol 94:66–76

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tamura K, Uwatoko N, Yamashita H, Fujimori M, Akiyama Y, Shoji A et al (2016) Discovery of natural interspecific hybrids between Miscanthus Sacchariflorus and Miscanthus Sinensis in Southern Japan: morphological characterization, genetic structure, and origin. Bioenerg Res 9:315–325

    Article  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M et al (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Torrecilla P, Acedo C, Marques I, Díaz-Pérez AJ, López-Rodríguez JA, Mirones V, Sus A, Llamas F, Alonso A, Pérez-Collazos E, Viruel J, Sahuquillo E, Del Carmen Sancho M, Komac B, Manso JA, Segarra-Moragues JG, Draper D, Villar L, Catalán P (2013) Morphometric and molecular variation in concert: taxonomy and genetics of the reticulate Pyrenean and Iberian alpine spiny fescues (Festuca eskia complex, Poaceae). Bot J Linn Soc 173:676–706

    Article  Google Scholar 

  • Tyler BF (1988) Description and distribution of natural variation in forage grasses. In: Proceedings of the Eucarpia fodder crops section meeting, (Lusignan, France), pp 13–22

  • Tyler B, Borrill M, Chorlton K (1978) Studies in Festuca. 10. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var. apennina in relation to their altitudinal distribution. J Appl Ecol 15:219–226

    Article  Google Scholar 

  • Uwatoko N, Tamura K, Yamashita H, Gau M (2016) Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in Southern Japan, show phenotypic variation in agronomic and morphological traits. Euphytica 212:355–370

    Article  CAS  Google Scholar 

  • Wagenaar EB (1968) Meiotic restitution and origin of polyploidy. 2. Influence of genotype on polyploid seedset in a Triticum crissum × T. turgidum hybrid. Can J Genet Cyt 10:836–843

    Article  Google Scholar 

  • WallisDeVries MF, Laca EA, Demment MW (1999) The importance of scale of patchiness for selectivity in grazing herbivores. Oecologia 121:355–363

    Article  CAS  Google Scholar 

  • Wang ZY, Ge YX, Scott M, Spangenberg G (2004) Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (Poaceae) plants. Am J Bot 91:523–530

    Article  Google Scholar 

  • Wang XL, Cheng ZM, Zhi S, Xu FX (2016) Breeding triploid plants: a review. Czech J Genet Plant 52:41–54

    Article  CAS  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified cree** bentgrass with CP4 EPSPS as a marker. P Natl Acad Sci USA 101:14533–14538

    Article  CAS  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  CAS  Google Scholar 

  • Zhang CH, Zhang SL, Shen SX, Wang M, Wang YH (2001) Observation on obtaining the triploid by 4X × 2X and its cytoembryology in false pakchoi. Acta Hortic Sinica 28:317–322

    Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to Prof. Adam J. Lukaszewski for critical reading and valuable comments on the manuscript. Special thanks belong to the team of Diversity Arrays Ltd. lead by Dr. Andrzej Kilian for their help in processing the data on analysis of clonality and Dr. Jan Vrána and Eva Jahnová for technical assistance on flow cytometry measurements. We greatly appreciated the support of Dr. Manuel Schneider in identifying suitable sampling locations, and we wish to thank Cheng Zhao for technical assistance.

Funding

This study was partially funded by the grant award LO1204 from the National Program of Sustainability I. and the Czech Academy of Sciences Long-Term Research Development Project RVO 67985939.

Author information

Authors and Affiliations

Authors

Contributions

TF, FXS and BB sampled the specimens, DK and JD conducted flow cytometry measurements, VM performed chloroplast DNA analysis, DK and JB analyzed clonality using Diversity Arrays Technology, TF, FXS and BB realized soil analysis, DK drafted the manuscript, BB and JD revised manuscript critically for important intellectual content.

Corresponding author

Correspondence to David Kopecký.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

35_2018_204_MOESM1_ESM.tif

Maps of study areas in Switzerland. The three localities are Stockberg, ct. St. Gallen, Lachenalp, ct. Glarus and Glaubenbielen, ct. Obwalden. The sample sites of each locality are highlighted with yellow (1345-1373 m a.s.l.), orange (1492-1575 m a.s.l.) and red (1673-1856 m a.s.l.) dots. Source: PK50 ©swisstopo (TIF 6279 KB)

GPS coordinates of the localities used in this study (MS Excel spreadsheet document .xls) (XLS 36 KB)

35_2018_204_MOESM3_ESM.xls

The distribution of diploids, triploids and tetraploids based on locality, elevation, topography and microhabitats supplemented with the data on soil composition and pH and the abundance of Festuca in vegetation (MS Excel spreadsheet document .xls) (XLS 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopecký, D., Felder, T., Schubiger, F.X. et al. Frequent occurrence of triploid hybrids Festuca pratensis × F. apennina in the Swiss Alps. Alp Botany 128, 121–132 (2018). https://doi.org/10.1007/s00035-018-0204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-018-0204-7

Keywords

Navigation