Log in

Approximate Finite Rate of Innovation Based Seismic Reflectivity Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Reflectivity inversion is an important deconvolution problem in reflection seismology that helps to describe the subsurface structure. Generally, deconvolution techniques iteratively work on the seismic data for estimating reflectivity. Therefore, these techniques are computationally expensive and may be slow to converge. In this paper, a novel method for estimating reflectivity signals in seismic data using an approximate finite rate of innovation (FRI) framework, is proposed. The seismic data is modeled as a convolution between the Ricker wavelet and the FRI signal, a Dirac impulse train. Relaxing the accurate exponential reproduction limitation given by generalised Strang-Fix (GSF) conditions, we develop a suitable sampling kernel utilizing Ricker wavelet which allows us to estimate the reflectivity signal. The experimental results demonstrate that the proposed approximate FRI framework provides a better reflectivity estimation than the deconvolution technique for medium-to-high signal-to-noise ratio (SNR) regimes with nearly 18% of seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. A. Adler, M. Araya-Polo, T. Poggio, Deep learning for seismic inverse problems: toward the acceleration of geophysical analysis workflows. IEEE Signal Process. Mag. 38(2), 89–119 (2021)

    Article  Google Scholar 

  2. R.G. Baraniuk, Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  3. T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano, L. Coulot, Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25(2), 31–40 (2008)

    Article  Google Scholar 

  4. J.A. Cadzow, Signal enhancement-a composite property map** algorithm. IEEE Trans. Acoust. Speech Signal Process. 36(1), 49–62 (1988)

    Article  MathSciNet  Google Scholar 

  5. L. Condat, A. Hirabayashi, Cadzow denoising upgraded: a new projection method for the recovery of Dirac pulses from noisy linear measurements. Sampling Theory Signal Image Process. 14(1), 17–47 (2015)

    Article  MathSciNet  Google Scholar 

  6. V. Das, A. Pollack, U. Wollner, T. Mukerji, Convolutional neural network for seismic impedance inversion CNN for seismic impedance inversion. Geophysics 84(6), R869–R880 (2019)

    Article  Google Scholar 

  7. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  8. A. Erdozain, P.M. Crespo, A new stochastic algorithm inspired on genetic algorithms to estimate signals with finite rate of innovation from noisy samples. Signal Process. 90(1), 134–144 (2010)

    Article  Google Scholar 

  9. A. Erdozain, P.M. Crespo, Reconstruction of aperiodic FRI signals and estimation of the rate of innovation based on the state space method. Signal Process. 91(8), 1709–1718 (2011)

    Article  Google Scholar 

  10. M.F. Fahmy, G. Fahmy, Exponential spline perfect reconstruction, decomposition and reconstruction with applications in compression and denoising. SIViP 8, 1111–1120 (2014)

    Article  Google Scholar 

  11. Y. Hua, T.K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38(5), 814–824 (1990)

    Article  MathSciNet  Google Scholar 

  12. G. Huang, N. Fu, J. Zhang, L. Qiao, Sparsity-based reconstruction method for signals with finite rate of innovation. In: 2016 IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2016), pp.4503–4507

  13. V.C. Leung, J.J. Huang, P.L. Dragotti, Reconstruction of FRI signals using deep neural network approaches. In: ICASSP 2020–2020 IEEE International Conference on Acoustics. (IEEE, Speech and Signal Processing (ICASSP), 2020), pp.5430–5434

  14. V.C. Leung, J.J., Huang Y.C., Eldar P.L. Dragotti, Reconstruction of FRI signals using autoencoders with fixed decoders. In: 2021 29th European Signal Processing Conference (EUSIPCO), IEEE, pp 1496–1500 (2021)

  15. V.C. Leung, J.J. Huang, Y.C. Eldar, P.L. Dragotti, Learning-based reconstruction of FRI signals. IEEE Transactions on Signal Processing (2023)

  16. C. Li, X. Liu, K. Yu, X. Wang, F. Zhang, Debiasing of seismic reflectivity inversion using basis pursuit de-noising algorithm. J. Appl. Geophys. 177, 104028 (2020)

    Article  Google Scholar 

  17. I. Maravic, M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53(8), 2788–2805 (2005)

    Article  MathSciNet  Google Scholar 

  18. I. Markovsky, Structured low-rank approximation and its applications. Automatica 44(4), 891–909 (2008)

    Article  MathSciNet  Google Scholar 

  19. G.S. Martin, R. Wiley, K.J. Marfurt, Marmousi2: An elastic upgrade for marmousi. Lead. Edge 25(2), 156–166 (2006)

    Article  Google Scholar 

  20. S. Mulleti, H. Zhang, Y.C. Eldar, Learning to sample: data-driven sampling and reconstruction of FRI signals. IEEE Access 11, 71048 (2023)

    Article  Google Scholar 

  21. M. Najjarzadeh, H. Sadjedi, Reconstruction of finite rate of innovation signals in a noisy scenario: a robust, accurate estimation algorithm. SIViP 14(8), 1707–1715 (2020)

    Article  Google Scholar 

  22. E. Nova Scotia Department, Penobscot 3d survey, data retrieved from https://terranubis.com/datainfo/penobscot (2017)

  23. D. Oldenburg, T. Scheuer, S. Levy, Recovery of the acoustic impedance from reflection seismograms. Geophysics 48(10), 1318–1337 (1983)

    Article  Google Scholar 

  24. D.O. Pérez, D.R. Velis, M.D. Sacchi, High-resolution prestack seismic inversion using a hybrid fista least-squares strategy. Geophysics 78(5), R185–R195 (2013)

    Article  Google Scholar 

  25. B. Russell, Machine learning and geophysical inversion—a numerical study. Lead. Edge 38(7), 512–519 (2019)

    Article  Google Scholar 

  26. P.M. Shearer, Introduction to Seismology (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  27. P. Sudhakar Reddy, A. Premkumar, B. Saikiran, B.S. Raghavendra, A.V. Narasimhadhan, Finite rate of innovation signal reconstruction using residual neural networks. In: 2020 IEEE 4th Conference on Information & Communication Technology (CICT), IEEE, pp 1–6 (2020)

  28. P. Sudhakar Reddy, B.S. Raghavendra, A.V. Narasimhadhan, Magnetic resonance image reconstruction by nullspace based finite rate of innovation framework. Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing 1–5 (2021)

  29. P. Sudhakar Reddy, B. Raghavendra, A. Narasimhadhan, Universal discrete finite rate of innovation scheme for sparse signal reconstruction. Circuits Syst. Signal Process. 42(4), 2346–2365 (2023)

    Article  Google Scholar 

  30. P. Sudhakar Reddy, B.S. Raghavendra, A.V. Narasimhadhan, Sparse-prony fri signal reconstruction. Signal, Image and Video Processing 1–7 (2023)

  31. V.Y. Tan, V.K. Goyal, Estimating signals with finite rate of innovation from noisy samples: a stochastic algorithm. IEEE Trans. Signal Process. 56(10), 5135–5146 (2008)

    Article  MathSciNet  Google Scholar 

  32. T. Tonellot, M. Broadhead, Sparse seismic deconvolution by method of orthogonal matching pursuit. In: 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010, European Association of Geoscientists & Engineers, cp–161 (2010)

  33. J.A. Urigüen, T. Blu, P.L. Dragotti, Fri sampling with arbitrary kernels. IEEE Trans. Signal Process. 61(21), 5310–5323 (2013)

    Article  Google Scholar 

  34. R. Versteeg, The marmousi experience: velocity model determination on a synthetic complex data set. Lead. Edge 13(9), 927–936 (1994)

    Article  Google Scholar 

  35. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  36. J. Wang, S. Wang, S. Yuan, J. Li, H. Yin, Stochastic spectral inversion for sparse-spike reflectivity by presetting the number of non-zero spikes as a prior sparsity constraint. J. Geophys. Eng. 11(1), 015010 (2014)

    Article  Google Scholar 

  37. Y.Q. Wang, Q. Wang, W.K. Lu, Q. Ge, X.F. Yan, Seismic impedance inversion based on cycle-consistent generative adversarial network. Pet. Sci. 19(1), 147–161 (2022)

    Article  Google Scholar 

  38. A. Wein, L. Srinivasan, Iterml: a fast, robust algorithm for estimating signals with finite rate of innovation. IEEE Trans. Signal Process. 61(21), 5324–5336 (2013)

    Article  Google Scholar 

  39. B. Wu, D. Meng, L. Wang, N. Liu, Y. Wang, Seismic impedance inversion using fully convolutional residual network and transfer learning. IEEE Geosci. Remote Sens. Lett. 17(12), 2140–2144 (2020)

    Article  Google Scholar 

  40. C. Yuan, M. Su, Seismic spectral sparse reflectivity inversion based on SBL-EM: experimental analysis and application. J. Geophys. Eng. 16(6), 1124–1138 (2019)

    Article  Google Scholar 

  41. C. Yuan, M. Su, Seismic spectral sparse reflectivity inversion based on SBL-EM: experimental analysis and application. J. Geophys. Eng. 16(6), 1124–1138 (2019)

    Article  Google Scholar 

  42. S. Yuan, S. Wang, Spectral sparse bayesian learning reflectivity inversion. Geophys. Prospect. 61(4), 735–746 (2013)

    Article  Google Scholar 

  43. J. Zhang, C. Huang, M.Y. Chow, X. Li, J. Tian, H. Luo, S. Yin, A data-model interactive remaining useful life prediction approach of lithium-ion batteries based on PF-BIGRU-TSAM. IEEE Transactions on Industrial Informatics (2023)

  44. J. Zhang, J. Tian, A.M. Alcaide, J.I. Leon, S. Vazquez, L.G. Franquelo, H. Luo, S. Yin, Lifetime extension approach based on levenberg-marquardt neural network and power routing of dc-dc converters. IEEE Transactions on Power Electronics (2023)

  45. R. Zhang, J. Castagna, Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76(6), R147–R158 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sudhakar Reddy.

Ethics declarations

Conflict of interest

Authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.S., Raghavendra, B.S. & Narasimhadhan, A.V. Approximate Finite Rate of Innovation Based Seismic Reflectivity Estimation. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02749-4

Keywords

Navigation