Log in

A Robust Cross-Weighted Thresholding Method for Object Extraction in Complex Scenes

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Traditional thresholding methods are widely used to extract objects of interest from image backgrounds in various practical applications. However, these methods often face challenges in complex scenes due to poor uniformity, noise, and low contrast. To overcome these limitations, this paper proposes a peak-weaken Otsu method (PWOTSU) that improves the segmentation performance of the Otsu method for automatically extracting objects in complex scenes. The proposed approach uses a set of cross parameters as weights for the Otsu criterion function to adaptively weaken the between-class variance at the peak of the histogram. This ensures that an appropriate threshold value is always obtained for images with different types of histogram distribution. The improved criterion function has the advantage of obtaining a more accurate threshold value without the need for additional parameters, making it easily applicable to various practical applications. Experimental results demonstrate that the proposed method effectively improves the segmentation accuracy and robustness compared to the standard Otsu method and its modifications, as evidenced by qualitative and quantitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Agrawal, R. Panda, S. Bhuyan, B.K. Panigrahi, Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol. Comput. 11, 16–30 (2013). https://doi.org/10.1016/j.swevo.2013.02.001

    Article  Google Scholar 

  2. A.K. Bhandari, A. Ghosh, I.V. Kumar, A local contrast fusion based 3D Otsu algorithm for multilevel image segmentation. IEEE CAA J. Autom. Sin. 7(1), 200–213 (2020)

  3. V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  4. A.K. Bhandari, I.V. Kumar, K. Srinivas, Cuttlefish algorithm based multilevel 3D Otsu function for color image segmentation. IEEE Trans. Instrum. Meas. PP(99), 1–10 (2019). https://doi.org/10.1109/TIM.2019.2922516

    Article  Google Scholar 

  5. X. Cao, T. Li, H. Li, S. **a, F. Ren, Y. Sun, X. Xu, A robust parameter-free thresholding method for image segmentation. IEEE Access 7, 3448–3458 (2019). https://doi.org/10.1109/ACCESS.2018.2889013

    Article  Google Scholar 

  6. A. Cs, H.A. Jian, B. Hc, A robust 2D Otsu’s thresholding method in image segmentation. J. Vis. Commun. Image Represent. 41, 339–351 (2016). https://doi.org/10.1016/j.jvcir.2016.10.013

    Article  Google Scholar 

  7. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th International Conference on Computer Vision, vol 2, (2001), pp. 416–423 https://doi.org/10.1109/ICCV.2001.937655

  8. D.N. Liu, R. Hou, W.Z. Wu, J.W. Hua, X.Y. Wang, B. Pang, Research on infrared image enhancement and segmentation of power equipment based on partial differential equation. J. Vis. Commun. Image Represent. 64, 102610 (2019). https://doi.org/10.1016/j.jvcir.2019.102610

    Article  Google Scholar 

  9. T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, M.B. Blaschko, Optimization for medical image segmentation: Theory and practice when evaluating with dice score or jaccard index. IEEE Trans. Med. Imaging PP(99), 1–15 (2020). https://doi.org/10.1109/TMI.2020.3002417

    Article  Google Scholar 

  10. J.L. Fan, B. Lei, A modified valley-emphasis method for automatic thresholding. Pattern Recogn. Lett. 33(6), 703–708 (2012). https://doi.org/10.1016/j.patrec.2011.12.009

    Article  Google Scholar 

  11. M. Fan, S. Lai, J. Huang, X. Wei, Z. Chai, J. Luo, X. Wei, Rethinking bisenet for real-time semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), pp. 9716–9725

  12. Y. Feng, H. Zhao, X. Li, X. Zhang, H. Li, A multi-scale 3D Otsu thresholding algorithm for medical image segmentation. Digit. Signal Proc. 60, 186–199 (2017). https://doi.org/10.1016/j.dsp.2016.08.003

    Article  Google Scholar 

  13. Y. Guo, A. Sengur, A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circ. Syst. Signal Process. 32(4), 1699–1723 (2013). https://doi.org/10.1007/s00034-012-9531-x

    Article  MathSciNet  Google Scholar 

  14. E.H. Houssein, K. Hussain, L. Abualigah, M.A. Elaziz, E. Cuevas, An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl.-Based Syst. 96(1), 107348 (2021). https://doi.org/10.1016/j.knosys.2021.107348

    Article  Google Scholar 

  15. D.Y. Huang, C.H. Wang, Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn. Lett. 30(3), 275–284 (2009). https://doi.org/10.1016/j.patrec.2008.10.003

    Article  Google Scholar 

  16. T. Huynh-The, O. Banos, S. Lee, B.H. Kang, E.-S. Kim, T. Le-Tien, NIC: a robust background extraction algorithm for foreground detection in dynamic scenes. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1478–1490 (2017). https://doi.org/10.1109/TCSVT.2016.2543118

    Article  Google Scholar 

  17. L. Khelifi, M. Mignotte, A multi-objective decision making approach for solving the image segmentation fusion problem. IEEE Trans. Image Process. 3831–3848, 96 (2017). https://doi.org/10.1109/TIP.2017.2699481

    Article  MathSciNet  Google Scholar 

  18. A. Kirillov, Y. Wu, K. He, R. Girshick, Pointrend: Image segmentation as rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), pp. 9799–9808

  19. T. Lei, X. Jia, T. Liu, S. Liu, H. Meng, A.K. Nandi, Adaptive morphological reconstruction for seeded image segmentation. IEEE Trans. Image Process. 28(11), 5510–5523 (2019). https://doi.org/10.1109/TIP.2019.2920514

    Article  MathSciNet  Google Scholar 

  20. R. Li, F. Tian, S.Q. Chen, Research on double edge detection method of midsole based on improved Otsu method. IEEE Access 8, 221539–221552 (2020). https://doi.org/10.1109/ACCESS.2020.3043817

    Article  Google Scholar 

  21. X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, H. Liu, Expectation-maximization attention networks for semantic segmentation. In ICCV, (2019), pp. 9166–9175

  22. X. Liao, H. Xu, Y. Zhou, K. Li, W. Tao, Q. Guo, L. Liu, Automatic image segmentation using salient key point extraction and star shape prior. Sig. Process. 105(dec.), 122–136 (2014). https://doi.org/10.1016/j.sigpro.2014.04.035

    Article  Google Scholar 

  23. T.Y. Lin, M. Maire, S. Belongie, J. Hays, C.L. Zitnick, Microsoft coco: common objects in context. Eur. Conf. Comput. Vis. 1(6), 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Article  Google Scholar 

  24. C. Liu, W. Liu, W. **ng, A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation. J. Vis. Commun. Image Represent. 59(FEB.), 89–107 (2019). https://doi.org/10.1016/j.jvcir.2019.01.001

    Article  Google Scholar 

  25. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  26. F. Meng, L. Guo, Q. Wu, H. Li, A new deep segmentation quality assessment network for refining bounding box based segmentation. IEEE Access. PP(99), 59514–59523 (2019). https://doi.org/10.1109/ACCESS.2019.2915121

    Article  Google Scholar 

  27. M.H. Merzban, E. Mahmoud, Efficient solution of otsu multilevel image thresholding: a comparative study. Expert Syst. Appl. 116, 299–309 (2019)

    Article  Google Scholar 

  28. X. Mu, H. Qi, X. Li, Automatic segmentation of images with superpixel similarity combined with deep learning. Circuits Syst. Signal Process. 39(2), 884–899 (2020). https://doi.org/10.1007/s00034-019-01249-0

    Article  Google Scholar 

  29. H.F. Ng, Automatic thresholding for defect detection. Pattern Recogn. Lett. 27(14), 1644–1649 (2006)

    Article  Google Scholar 

  30. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (2007)

    Article  Google Scholar 

  31. O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, (2015), pp. 234–241 https://doi.org/10.1007/978-3-319-24574-4_28

  32. P.D. Sathya, R. Kalyani, V.P. Sakthivel, Color image segmentation using Kapur, Otsu and minimum cross entropy functions based on exchange market algorithm. Expert Syst. Appl. 172, 114636 (2021). https://doi.org/10.1016/j.eswa.2021.114636

    Article  Google Scholar 

  33. N. Singh, A.K. Bhandari, I.V. Kumar, Fusion-based contextually selected 3D Otsu thresholding for image segmentation. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-021-10706-5

    Article  Google Scholar 

  34. S. Singh, N. Mittal, H. Singh, A multilevel thresholding algorithm using LebTLBO for image segmentation. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04989-2

    Article  Google Scholar 

  35. L. **ao, H. Ouyang, C. Fan, T. Umer, S. Wan, Gesture image segmentation with Otsu’s method based on noise adaptive angle threshold. Multimed. Tools Appl. (2020). https://doi.org/10.1007/s11042-019-08544-7

    Article  Google Scholar 

  36. T. **ong, L. Zhang, Z. Yi, Double Gaussian mixture model for image segmentation with spatial relationships. J. Vis. Commun. Image Represent. (2016). https://doi.org/10.1016/j.jvcir.2015.10.018

    Article  Google Scholar 

  37. X. Xu, S. Xu, L. **, E. Song, Characteristic analysis of Otsu threshold and its applications. Pattern Recogn. Lett. 32(7), 956–961 (2011). https://doi.org/10.1016/j.patrec.2011.01.021

    Article  Google Scholar 

  38. Y. Zhao, S. Liu, Z. Hu, Y. Bai, C. Shen, X. Shi, Separate degree based Otsu and signed similarity driven level set for segmenting and counting anthrax spores. Comput. Electron. Agric. 169, 105230 (2020). https://doi.org/10.1016/j.compag.2020.105230

    Article  Google Scholar 

  39. M. Yin, Z. Yao, Y. Cao, X. Li, Z. Zhang, S. Lin, H. Hu, Disentangled non-local neural networks. ECCV 7, 191–207 (2020). https://doi.org/10.1007/978-3-030-58555-6_12

    Article  Google Scholar 

  40. X.C. Yuan, L.S. Wu, Q. Peng, An improved Otsu method using the weighted object variance for defect detection. Appl. Surf. Sci. 349(sep.15), 472–484 (2015). https://doi.org/10.1016/j.apsusc.2015.05.033

    Article  Google Scholar 

  41. Y. Zhan, G. Zhang, An improved OTSU algorithm using histogram accumulation moment for ore segmentation. Symmetry (2019). https://doi.org/10.3390/sym11030431

    Article  Google Scholar 

  42. Y. Zhao, S. Liu, Z. Hu, Y. Bai, X. Shi, Separate degree based Otsu and signed similarity driven level set for segmenting and counting anthrax spores. Comput. Electron. Agric. 169, 105230 (2020). https://doi.org/10.1016/j.compag.2020.105230

    Article  Google Scholar 

  43. Z. Zhu, M. Xu, S. Bai, T. Huang, X. Bai, Asymmetric non-local neural networks for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, (2019), pp. 593–602

  44. M. Zortea, E. Flores, J. Scharcanski, A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recogn. 64, 92–104 (2017). https://doi.org/10.1016/j.patcog.2016.10.031

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (61801412), Natural Science Foundation of Fujian Province (2019J01874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Tang, J., **ao, M. et al. A Robust Cross-Weighted Thresholding Method for Object Extraction in Complex Scenes. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02704-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02704-3

Keywords

Navigation