Log in

Dominant Dimension and Almost Relatively True Versions of Schur’s Theorem

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

Perhaps the most fundamental problems of representation theory are to classify and to describe irreducible (=simple) representations and to determine cohomology. It is crucial to develop techniques that allow to transfer information from some (known) cases to other (unknown) cases. A classical result of this kind, due to Schur, recently has been extended widely, and put into a general context. These modern ‘relative’ versions of Schur’s result will be presented. Moreover, the theoretical background behind these results, and the crucial invariant controlling the existence and strength of such equivalences, will be explained, and illustrated by an explicit example. Finally, some open problems will be stated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Alperin, Local representation theory. Modular representations as an introduction to the local representation theory of finite groups. Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986. x+178 pp.

  2. I.Assem, D.Simson and A.Skowronski, Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006. x+458 pp.

  3. Auslander M., Reiten I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. M.Auslander, I.Reiten and S.Smalø, Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995. xiv+423 pp.

  5. Auslander M., Solberg Ø.: Relative homology and representation theory. III. Cotilting modules and Wedderburn correspondence. Comm. Algebra 21(9), 3081–3097 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.Brundan and C.Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I, II, III and IV. Preprints.

  7. Chuang J., Rouquier R.: Derived equivalences for symmetric groups and \({\int l_2}\)-categorification. Ann. of Math. (2) 167(1), 245–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chuang J., Turner W.: Cubist algebras. Adv. Math. 217(4), 1614–1670 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cline E., Parshall B., Scott L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MATH  MathSciNet  Google Scholar 

  10. C.Curtis and I.Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1981. xxi+819 pp.

  11. Dipper R., Doty S., Hu J.: Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans. Amer. Math. Soc. 360(1), 189–213 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. R.Dipper, S.Doty and F.Stoll, Quantized mixed tensor space and Schur-Weyl duality I, II. Preprints, 2008 and 2009.

  13. Dlab V., Ringel C.M.: Quasi-hereditary algebras. Illinois J. Math. 33(2), 280–291 (1989)

    MATH  MathSciNet  Google Scholar 

  14. V.Dlab and C.M.Ringel, The module theoretical approach to quasi-hereditary algebras. Representations of algebras and related topics (Kyoto, 1990), 200–224, London Math. Soc. Lecture Note Ser., 168, Cambridge Univ. Press, Cambridge, 1992.

  15. Donkin S.: On Schur algebras and related algebras. I. J. Algebra 104(2), 310–328 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. S.Donkin, Tilting modules for algebraic groups and finite dimensional algebras. Handbook of tilting theory, 215–257, London Math. Soc. Lecture Note Ser., 332, Cambridge Univ. Press, Cambridge, 2007.

  17. Doty S., Hu J.: Schur-Weyl duality for orthogonal groups. Proc. Lond. Math. Soc. (3) 98(3), 679–713 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Erdmann K.: Stratifying systems, filtration multiplicities and symmetric groups. J. Algebra Appl. 4(5), 551–555 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Erdmann K., Henke A.: On Ringel duality for Schur algebras. Math. Proc. Cambridge Philos. Soc. 132(1), 97–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Erdmann K., Henke A.: On Schur algebras, Ringel duality and symmetric groups. J. Pure Appl. Algebra 169(2-3), 175–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Erdmann K., Nakano D.: Representation type of q-Schur algebras. Trans. Amer. Math. Soc. 353(12), 4729–4756 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Erdmann K., Nakano D.: Representation type of Hecke algebras of type A. Trans. Amer. Math. Soc. 354(1), 275–285 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. M.Fang and S.Koenig, Schur functors and dominant dimension; 22 pages, to appear in Trans. Amer. Math. Soc.

  24. Friedlander E., Suslin A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Geck M.: Hecke algebras of finite type are cellular. Invent. Math. 169(3), 501–517 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Graham J., Lehrer G.: Cellular algebras. Invent. Math. 123(1), 1–34 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.A.Green, Polynomial representations of GL n . Lecture Notes in Mathematics, 830. Springer-Verlag, Berlin-New York, 1980. vi+118 pp.

  28. Hartmann R., Paget R.: Young modules and filtration multiplicities for Brauer algebras. Math. Z. 254(2), 333–357 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hartmann R., Henke A., Koenig S., Paget R.: Cohomological stratification of diagram algebras. Math. Annalen 347, 765–804 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hemmer D., Nakano D.: Specht filtrations for Hecke algebras of type A. J. London Math. Soc. (2) 69(3), 623–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Henke A.: Schur subalgebras and an application to the symmetric group. J. Algebra 233(1), 342–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Henke A., Koenig S.: Relating polynomial GL(n)-representations in different degrees. J. Reine Angew. Math. 551, 219–235 (2002)

    MATH  MathSciNet  Google Scholar 

  33. A.Henke and S.Koenig, Schur algebras of Brauer algebras, I. Preprint.

  34. J.E.Humphreys, Representations of semisimple Lie algebras in the BGG category \({\mathcal{O}}\). Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI, 2008. xvi+289 pp.

  35. S.Koenig, Filtrations, stratifications and applications. Representations of finite dimensional algebras and related topics in Lie theory and geometry, 65–111, Fields Inst. Commun., 40, Amer. Math. Soc., Providence, RI, 2004.

  36. S.Koenig, A panorama of diagram algebras. Trends in representation theory of algebras and related topics, 491–540, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008.

  37. Koenig S., Slungård I.H., ** C.C.: Double centralizer properties, dominant dimension, and tilting modules. J. Algebra 240, 393–412 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. S.Koenig and C.C.**, On the structure of cellular algebras. Algebras and modules, II (Geiranger, 1996), 365–386, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998.

  39. Koenig S., ** C.C.: A characteristic free approach to Brauer algebras. Trans. Amer. Math. Soc. 353(4), 1489–1505 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. V.Mazorchuk and V.Miemietz, Symmetric quasi-hereditary envelopes, to appear in Illinois J. Math.

  41. Miemietz V., Turner W.: Hicas of length 4. Documenta Math. 15, 177–205 (2010)

    MATH  MathSciNet  Google Scholar 

  42. Ringel C.M.: The category of modules with good filtration over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–225 (1991)

    Article  MathSciNet  Google Scholar 

  43. C.M.Ringel, Artin algebras of dominant dimension at least 2. Seminar notes, Bielefeld. Available at: http://www.mathematik.uni-bielefeld.de/ringel/opus/domdim.pdf

  44. Rouquier R.: q-Schur algebras and complex reflection groups. Mosc. Math. J. 8, 119–158 (2008)

    MATH  MathSciNet  Google Scholar 

  45. Scopes J.: Cartan matrices and Morita equivalences for blocks of the symmetric group. J. Algebra 142(2), 441–455 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  46. Soergel W.: Kategorie \({\mathcal{O}}\), perverse Garben und Moduln ber den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc. 3(2), 421–445 (1990)

    MATH  MathSciNet  Google Scholar 

  47. K.Yamagata, Frobenius algebras. Handbook of algebra, Vol. 1, 841–887, North-Holland, Amsterdam, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Koenig.

Additional information

Lecture held in the Seminario Matematico e Fisico on March 30, 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, S. Dominant Dimension and Almost Relatively True Versions of Schur’s Theorem. Milan J. Math. 78, 457–479 (2010). https://doi.org/10.1007/s00032-010-0130-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-010-0130-7

Mathematics Subject Classification (2010)

Keywords

Navigation