Log in

Inequalities for Maximal Operators Associated with a Family of General Sets

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \({\mathbb {E}}=\{E_r(x):r>0,x\in X\}\) be a family of open subsets of a topological space X equipped with a nonnegative Borel measure \(\mu \) satisfying some basic properties. We establish sharp quantitative weighted norm inequalities for the Hardy–Littlewood maximal operator \(M_{{\mathbb {E}}}\) associated with \({\mathbb {E}}\) in terms of mixed \(A_p\)\(A_\infty \) constants. The main ingredient to prove this result is a sharp form of a weak reverse Hölder inequality for the \(A_{\infty ,{\mathbb {E}}}\) weights. As an application of this inequality, we also provide a quantitative version of the open property for \(A_{p,{\mathbb {E}}}\) weights. Next, we prove a covering lemma in this setting and using this lemma establish the endpoint Fefferman–Stein weighted inequality for the maximal operator \(M_{{\mathbb {E}}}\). Moreover, vector-valued extensions for maximal inequalities are also obtained in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availibility

Not applicable in the manuscript as no datasets were generated or analyzed during the current study.

References

  1. Aimar, H., Bernardis, A., Nowak, L.: Dyadic Fefferman–Stein inequalities and the equivalence of Haar bases on weighted Lebesgue spaces. Proc. R. Soc. Edinb. Sect. A 141, 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  2. Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340, 253–272 (1993)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., Gutiérrez, C.E.: Real analysis related to the Monge–Ampère equation. Trans. Am. Math. Soc. 348, 1075–1092 (1996)

    Article  Google Scholar 

  4. Calderón, A.P.: Inequalities for the maximal function relative to a metric. Studia Math. 57, 297–306 (1976)

    Article  MathSciNet  Google Scholar 

  5. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–63 (1975)

    Article  MathSciNet  Google Scholar 

  6. Carbery, A., Christ, M., Vance, J., Wainger, S., Watson, D.: Operators associated to flat plane curves: \(L^p\) estimates via dilation methods. Duke Math. J. 59, 675–700 (1989)

    Article  MathSciNet  Google Scholar 

  7. Chang, D.C., Dafni, G., Stein, E.M.: Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in \(\mathbb{R} ^d\). Trans. Am. Math. Soc. 351, 1605–1661 (1999)

    Article  Google Scholar 

  8. Chang, D.C., Krantz, S.G., Stein, E.M.: \(H^p\) Theory on a smooth domain in \(\mathbb{R} ^d\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  10. Ding, Y., Lee, M-Y., and Lin, C-Ch., \({{\cal{A}}}_{p,\mathbb{E}}\) weights, maximal operators, and Hardy spaces associated with a family of general sets. J. Fourier Anal. Appl., 20, 608–667 (2014)

  11. Ding, Y., Lee, M-Y., Lin, C-Ch.: Carleson measure characterization of weighted BMO associated with a family of general sets. J. Geom. Anal., 27, 842–867 (2017)

  12. Edwards, R.E., Gaudry, G.I.: Littlewood–Paley and Multiplier Theory. Springer-Verlag, Berlin (1977)

    Book  Google Scholar 

  13. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  Google Scholar 

  14. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

    Google Scholar 

  15. Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Jpn., 22, 529–534 (1977/78)

  16. Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. North Holland Math. Studies, 116, North Holland, Amsterdam (1985)

  17. Guzmán, M.: Differentiation of integrals in \(\mathbb{R} ^d\). Lecture Notes in Mathematics, vol. 481. Springer, Berlin (1975)

  18. Hardy, G.H., Littlewood, J.E.: A maximal theorem with function-theoretic applications. Acta Math. 54, 81–116 (1930)

    Article  MathSciNet  Google Scholar 

  19. Hruščev, S,V.: A description of weights satisfying the \(A_\infty \) condition of Muckenhoupt. Proc. Am. Math. Soc., 90, 253–257 (1984)

  20. Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_{\infty }\) weights on spaces of homogeneous type. J. Funct. Anal. 263, 3883–3899 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kenig, C.: Elliptic boundary value problems on Lipschitz domains, Bei**g Lectures in Harmonic Analysis. Ann. Math. Stud. 112, 131–183 (1986)

    Google Scholar 

  22. Kenig, C.: Harmonic analysis techniques for second order elliptic boundary value problems, vol. 83, CBMS Regional Conference Series in Math. AMS (1994)

  23. Kurtz, D.: Weighted norm inequalities for the Hardy–Littlewood maximal function for one parameter rectangles. Studia Math. 53, 39–54 (1975)

    Article  MathSciNet  Google Scholar 

  24. Luque, T., Parissis, I.: The endpoint Fefferman–Stein inequality for the strong maximal function. J. Funct. Anal. 266, 199–212 (2014)

    Article  MathSciNet  Google Scholar 

  25. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  26. Neugebauer, C.: On the Hardy-Littlewood maximal function and some applications. Trans. Am. Math. Soc. 259, 99–105 (1980)

    Article  MathSciNet  Google Scholar 

  27. Ombrosi, S., Rivera-Ríos, I.P., Safe, M.D.: Fefferman–Stein inequalities for the Hardy–Littlewood maximal function on the infinite rooted k-ary tree. Int. Math. Res. Not., IMRN 2021, 2736–2762 (2021)

  28. Paternostro, V., Rela, E.: Improved Buckley’s theorem on LCA groups. Pac. J. Math. 299, 171–189 (2019)

    Article  Google Scholar 

  29. Saks, S.: Remark on the differentiability of the Lebesgue indefinite integral. Fund. Math. 22, 257–261 (1934)

    Article  Google Scholar 

  30. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  31. Wiener, N.: The ergodic theorem. Duke Math. J. 5, 1–18 (1939)

    Article  MathSciNet  Google Scholar 

  32. Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A_{\infty }\). Duke Math. J. 55, 19–50 (1987)

    Article  MathSciNet  Google Scholar 

  33. Wilson, J.M.: Weighted Littlewood–Paley theory and exponential-square integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nurul Molla.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, B., Molla, M.N. Inequalities for Maximal Operators Associated with a Family of General Sets. Results Math 79, 197 (2024). https://doi.org/10.1007/s00025-024-02224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02224-1

Keywords

Mathematics Subject Classification

Navigation