Log in

Horizontal Fourier Transform of the Polyanalytic Fock Kernel

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(n,m\ge 1\) and \(\alpha >0\). We denote by \(\mathcal {F}_{\alpha ,m}\) the m-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m-analytic functions defined on \(\mathbb {C}^n\) and square integrables with respect to the Gaussian weight \(\exp (-\alpha |z|^2)\). We study the von Neumann algebra \(\mathcal {A}\) of bounded linear operators acting in \(\mathcal {F}_{\alpha ,m}\) and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of \(\mathbb {R}^n\). The reproducing kernel of \(\mathcal {F}_{1,m}\) was computed by Youssfi [Polyanalytic reproducing kernels in \(\mathbb {C}^n\), Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of \(\mathcal {F}_{\alpha ,m}\) by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with \(d=\left( {\begin{array}{c}n+m-1\\ n\end{array}}\right) \). Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that \(\mathcal {F}_{\alpha ,m}\) is isometrically isomorphic to the space of vector-functions \(L^2(\mathbb {R}^n)^d\), and \(\mathcal {A}\) is isometrically isomorphic to the algebra of matrix-functions \(L^\infty (\mathbb {R}^n)^{d\times d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 10th edn. National Bureau of Standards, Washintong D.C (1972)

  2. Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal. 29(3), 287–302 (2010). https://doi.org/10.1016/j.acha.2009.11.004

    Article  MathSciNet  Google Scholar 

  3. Abreu, L.D.: Super-wavelets versus poly-Bergman spaces. Integr. Equ. Oper. Theory 73, 177–193 (2012). https://doi.org/10.1007/s00020-012-1956-x

    Article  MathSciNet  Google Scholar 

  4. Abreu, L.D., Feichtinger, H.G.: Function spaces of polyanalytyc functions. In: Vasil’ev, A. (ed.) Harmonic and Complex Analysis and its Applications, Trends in Mathematics. Birkhäuser, Cham (2014). https://doi.org/10.1007/978-3-319-01806-5_1

    Chapter  Google Scholar 

  5. Arroyo Neri, J.L., Sánchez-Nungaray, A., Hernández Marroquin, M., López-Martínez, R.R.: Toeplitz operators with Lagrangian invariant symbols acting on the poly-Fock space of \(\mathbb{C}^n\). J. Funct. Spaces 2021, 9919243, 13 (2021). https://doi.org/10.1155/2021/9919243

  6. Askour, N., Intissar, A., Mouayn, Z.: Explicit formulas for reproducing kernels of generalized Bargmann spaces. C. R. Acad. Sci. Paris Ser. I 325, 707–712 (1997). https://doi.org/10.1016/S0764-4442(97)80045-6

    Article  Google Scholar 

  7. Balk, M.B.: Polyanalytic Functions. Akademie Verlag, Berlin (1991)

    Google Scholar 

  8. Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, The Theorem of Campbell, Baker, Hausdorff and Dynkin (2011). https://doi.org/10.1007/978-3-642-22597-0

  9. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-0196-0

    Book  Google Scholar 

  10. Esmeral, K., Vasilevski, N.: C*-algebra generated by horizontal Toeplitz operators on the Fock space. Bol. Soc. Mat. Mex. 22, 567–582 (2016). https://doi.org/10.1007/s40590-016-0110-1

    Article  MathSciNet  Google Scholar 

  11. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. 2. McGraw Hill, New York (1953)

    Google Scholar 

  12. Folland, G.B.: Harmonic Analysis on Phase Space. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  13. Folland, G.B.: A Course in Abstract Harmonic Analysis. Princeton University Press, Princeton (1995)

    Google Scholar 

  14. Grafakos, L.: Modern Fourier Analysis. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-1230-8

    Book  Google Scholar 

  15. Hachadi, H., Youssfi, E.H.: The polyanalytic reproducing kernels. Complex Anal. Oper. Theory 13, 3457–3478 (2019). https://doi.org/10.1007/s11785-019-00956-5

    Article  MathSciNet  Google Scholar 

  16. Herrera-Yañez, C., Maximenko, E.A., Ramos-Vazquez, G.: Translation-invariant operators in reproducing kernel Hilbert spaces. Integr. Equ. Oper. Theory 94, 31 (2022). https://doi.org/10.1007/s00020-022-02705-4

    Article  MathSciNet  Google Scholar 

  17. Hutník, O., Hutníková, M.: Toeplitz operators on poly-analytic spaces via time-scale analysis. Oper. Matrices 8(4), 1107–1129 (2014). https://doi.org/10.7153/oam-08-62

    Article  MathSciNet  Google Scholar 

  18. Keller, J., Luef, F.: Polyanalytic Toeplitz operators: isomorphisms, symbolic calculus and approximation of Weyl operators. J. Fourier Anal. Appl. 27, 47 (2021). https://doi.org/10.1007/s00041-021-09843-0

    Article  MathSciNet  Google Scholar 

  19. Lacey, M., Thiele, C.: A proof of boudedness of the Carleson operator. Math. Res. Lett. 7(4), 361–370 (2000). https://doi.org/10.4310/MRL.2000.v7.n4.a1

    Article  MathSciNet  Google Scholar 

  20. Leal-Pacheco, C.R., Maximenko, E.A., Ramos-Vazquez, G.: Homogeneously polyanalytic kernels on the unit ball and the Siegel domain. Complex Anal. Oper. Theory 15, 99 (2021). https://doi.org/10.1007/s11785-021-01145-z

    Article  MathSciNet  Google Scholar 

  21. Lee-Guzmán, E., Maximenko, E.A., Ramos-Vazquez, G., Sánchez-Nungaray, A.: Tests in SageMath of the paper on the horizontal Fourier transform of the polyanalytic Fock kernel (2024). https://github.com/EgorMaximenko/hftpfk

  22. Maximenko, E.A., Tellería-Romero, A.M.: Radial operators in polyanalytic Bargmann–Segal–Fock spaces. Operator Theory Adv. Appl. 279, Birkhäuser, 277–305 (2020). https://doi.org/10.1007/978-3-030-44651-2_18

  23. Mouayn, Z., El Moize, O.: A set of \(q\)-coherent states for the Rogers–Szegő oscillator. Lett. Math. Phys. 111, 143 (2021). https://doi.org/10.1007/s11005-021-01486-y

    Article  Google Scholar 

  24. Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  25. The Sage Developers: SageMath, the Sage Mathematics Software System, version 10.0 (2023). https://www.sagemath.org

  26. Sánchez-Nungaray, A., González-Flores, C., López-Martínez, R.R., Arroyo-Neri, J.L.: Toeplitz operators with horizontal symbols acting on the poly-Fock spaces. J. Funct. Spaces, ID 8031259, 8 (2018). https://doi.org/10.1155/2018/8031259

  27. Shigekawa, I.: Eigenvalue problemas for the Schrödinger operator with the magnetic field on a compact Riemannian manifold. J. Funct. Anal. 75, 92–127 (1987). https://doi.org/10.1016/0022-1236(87)90108-x

    Article  MathSciNet  Google Scholar 

  28. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006). https://doi.org/10.1109/TIT.2006.881713

    Article  MathSciNet  Google Scholar 

  29. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  30. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton (1993)

    Book  Google Scholar 

  31. Vasilevski, N.L.: Poly-Fock spaces. Operator Theory: Adv. Appl. 117, Birkhäuser, 371–386 (2000). https://doi.org/10.1007/978-3-0348-8403-7_28

  32. Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. Birkhäuser, Basel (2008). https://doi.org/10.1007/978-3-7643-8726-6

  33. Vasilevski, N.: On polyanalytic functions in several complex variables. Complex Anal. Oper. Theory 17, 80 (2023). https://doi.org/10.1007/s11785-023-01386-0

    Article  MathSciNet  Google Scholar 

  34. Youssfi, E.H.: Polyanalytic reproducing kernels in \(\mathbb{C} ^n\). Complex Anal. Synerg. 7, 28 (2021). https://doi.org/10.1007/s40627-021-00088-7

    Article  Google Scholar 

  35. Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-8801-0

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for useful suggestions and corrections.

Funding

The second author has been supported by Proyecto CONAHCYT “Ciencia de Frontera” FORDECYT-PRONACES/61517/2020 and by IPN-SIP project 20230216 (Instituto Politécnico Nacional, Mexico). The third author has been supported by a postdoctoral Grant (CONAHCYT, Mexico). The fourth author has been supported by CONAHCYT Grant 280732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Ramos-Vazquez.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee-Guzmán, E., Maximenko, E.A., Ramos-Vazquez, G. et al. Horizontal Fourier Transform of the Polyanalytic Fock Kernel. Integr. Equ. Oper. Theory 96, 22 (2024). https://doi.org/10.1007/s00020-024-02772-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-024-02772-9

Keywords

Mathematics Subject Classification

Navigation