Log in

Chronic brain damage in HIV-infected individuals under antiretroviral therapy is associated with viral reservoirs, sulfatide release, and compromised cell-to-cell communication

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets generated are all available upon reasonable request.

References

  1. Wang X, Xu H (2021) Residual proviral reservoirs: a high risk for HIV persistence and driving forces for viral rebound after analytical treatment interruption. Viruses, 13(2).

  2. Weber MT, et al. Longitudinal effects of combination antiretroviral therapy on cognition and neuroimaging biomarkers in treatment-naive people with HIV. Neurology, 2022.

  3. Spatola M et al (2022) Functional compartmentalization of antibodies in the central nervous system during chronic HIV infection. J Infect Dis 226(4):738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rudd H, Toborek M Pitfalls of antiretroviral therapy: current status and long-term CNS toxicity. Biomolecules, 2022. 12(7).

  5. Sinharay S, Hammoud DA (2019) Brain PET imaging: value for understanding the pathophysiology of HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 16(1):66–75

    Article  PubMed  Google Scholar 

  6. Fennema-Notestine C et al (2013) Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection. J Neurovirol 19(4):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nichols MJ et al (2019) Atrophic brain signatures of mild forms of neurocognitive impairment in virally suppressed HIV infection. AIDS 33(1):55–66

    Article  PubMed  Google Scholar 

  8. Cysique LA et al (2017) White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol 23(4):539–547

    Article  PubMed  Google Scholar 

  9. Sanford R et al (2019) HIV infection and cerebral small vessel disease are independently associated with brain atrophy and cognitive impairment. AIDS 33(7):1197–1205

    Article  PubMed  Google Scholar 

  10. Strain JF et al (2017) Diffusion basis spectral imaging detects ongoing brain inflammation in virologically well-controlled HIV+ patients. J Acquir Immune Defic Syndr 76(4):423–430

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eggers C et al (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264(8):1715–1727

    Article  PubMed  PubMed Central  Google Scholar 

  12. Su T et al (2016) White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS 30(15):2329–2339

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez CA, Eliseo E The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells, 2022. 11(14).

  14. Roth LM et al (2021) HIV-induced neuroinflammation inhibits oligodendrocyte maturation via glutamate-dependent activation of the PERK arm of the integrated stress response. Glia 69(9):2252–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Festa L et al (2021) Protease Inhibitors, Saquinavir and Darunavir, Inhibit Oligodendrocyte Maturation: Implications for Lysosomal Stress. J Neuroimmune Pharmacol 16(1):169–180

    Article  PubMed  Google Scholar 

  16. Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36(4):245–319

    Article  CAS  PubMed  Google Scholar 

  17. Isaac G et al (2006) Sulfatide with short fatty acid dominates in astrocytes and neurons. FEBS J 273(8):1782–1790

    Article  CAS  PubMed  Google Scholar 

  18. Moyano AL et al (2014) Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Biochem 467:31–39

    Article  CAS  PubMed  Google Scholar 

  19. Svensson J et al (2021) Cerebrospinal fluid sulfatide levels lack diagnostic utility in the subcortical small vessel type of Dementia. J Alzheimers Dis 82(2):781–790

    Article  CAS  PubMed  Google Scholar 

  20. Novakova L et al (2018) Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J Neurochem 146(3):322–332

    Article  CAS  PubMed  Google Scholar 

  21. Li G et al (2015) Relationship between carotid artery atherosclerosis and sulfatide in hypertensive patients. Genet Mol Res 14(2):4840–4846

    Article  CAS  PubMed  Google Scholar 

  22. Jonsson M et al (2010) Cerebrospinal fluid biomarkers of white matter lesions - cross-sectional results from the LADIS study. Eur J Neurol 17(3):377–382

    Article  CAS  PubMed  Google Scholar 

  23. Flirski M, Sobow T (2005) Biochemical markers and risk factors of Alzheimer’s disease. Curr Alzheimer Res 2(1):47–64

    Article  CAS  PubMed  Google Scholar 

  24. Eugenin EA, Berman JW (2007) Gap junctions mediate human immunodeficiency virus-bystander killing in astrocytes. J Neurosci 27(47):12844–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon SB et al (2008) Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J Immunol 181(11):8077–8087

    Article  CAS  PubMed  Google Scholar 

  26. Eugenin EA et al (2011) Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 31(26):9456–9465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikalsen SO, Kaalhus O (1996) A characterization of pervanadate, an inducer of cellular tyrosine phosphorylation and inhibitor of gap junctional intercellular communication. Biochim Biophys Acta 1290(3):308–318

    Article  PubMed  Google Scholar 

  28. Moreno, A.P., et al., Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res, 1994. 74(6): p. 1050–7.

  29. Matesic DF et al (1994) Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol Carcinog 10(4):226–236

    Article  CAS  PubMed  Google Scholar 

  30. el-Fouly MH, Trosko JE, Chang CC Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res, 1987. 168(2): p. 422–30.

  31. Boerwinkle A, Ances BM (2019) Molecular imaging of neuroinflammation in HIV. J Neuroimmune Pharmacol 14(1):9–15

    Article  PubMed  Google Scholar 

  32. Behrman-Lay AM et al (2016) Human immunodeficiency virus has similar effects on brain volumetrics and cognition in males and females. J Neurovirol 22(1):93–103

    Article  CAS  PubMed  Google Scholar 

  33. Erten-Lyons D et al (2013) Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology 81(11):977–983

    Article  PubMed  PubMed Central  Google Scholar 

  34. Irollo E et al (2021) Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 78(9):4283–4303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palavicini JP et al (2016) Novel molecular insights into the critical role of sulfatide in myelin maintenance/function. J Neurochem 139(1):40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shroff SM et al (2009) Adult CST-null mice maintain an increased number of oligodendrocytes. J Neurosci Res 87(15):3403–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Winzeler AM et al (2011) The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci 31(17):6481–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi T, Suzuki T (2012) Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 53(8):1437–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(Suppl 1):171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirahara Y et al (2017) Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J Neurochem 140(3):435–450

    Article  CAS  PubMed  Google Scholar 

  41. Valdebenito S et al (2021) Astrocytes are HIV reservoirs in the brain: A cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J Neurochem 158(2):429–443

    Article  CAS  PubMed  Google Scholar 

  42. Malik S et al (2021) HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: a potential mechanism of bystander damage and viral reservoir survival. Prog Neurobiol 206:102157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prevedel L et al (2017) HIV-associated cardiovascular disease: role of connexin 43. Am J Pathol 187(9):1960–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berman JW et al (2016) HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. J Neuroinflammation 13(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thevenin AF et al (2017) Phosphorylation regulates connexin43/ZO-1 binding and release, an important step in gap junction turnover. Mol Biol Cell 28(25):3595–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thevenin AF et al (2013) Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 28(2):93–116

    CAS  PubMed  Google Scholar 

  47. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723–C742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nodin C, Nilsson M, Blomstrand F (2005) Gap junction blockage limits intercellular spreading of astrocytic apoptosis induced by metabolic depression. J Neurochem 94(4):1111–1123

    Article  CAS  PubMed  Google Scholar 

  49. Cooley SA et al (2021) Effects of anticholinergic medication use on brain integrity in persons living with HIV and persons without HIV. AIDS 35(3):381–391

    Article  CAS  PubMed  Google Scholar 

  50. Sanford R et al (2017) Regionally Specific Brain Volumetric and Cortical Thickness Changes in HIV-Infected Patients in the HAART Era. J Acquir Immune Defic Syndr 74(5):563–570

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cole JH et al (2018) No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus: longitudinal neuroimaging results from the comorbidity in relation to AIDS (COBRA) project. Clin Infect Dis 66(12):1899–1909

    Article  PubMed  Google Scholar 

  52. Sanford R et al (2018) Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurol 75(1):72–79

    Article  PubMed  Google Scholar 

  53. Sanford R et al (2018) Longitudinal trajectories of brain volume and cortical thickness in treated and untreated primary human immunodeficiency virus infection. Clin Infect Dis 67(11):1697–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saylor D et al (2016) HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol 12(4):234–248

    Article  PubMed  PubMed Central  Google Scholar 

  55. D’Aversa TG et al (2013) Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 39(3):270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim HS et al (2020) Sulfatide Inhibits HMGB1 Secretion by Hindering Toll-Like Receptor 4 Localization Within Lipid Rafts. Front Immunol 11:1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang SH et al (2011) Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol 22(7):1305–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams, C.R., et al., Distinct Mycoplasma pneumoniae Interactions with Sulfated and Sialylated Receptors. Infect Immun, 2020. 88(11).

  59. Stax AM et al (2017) Autoreactivity to sulfatide by human invariant NKT cells. J Immunol 199(1):97–106

    Article  CAS  PubMed  Google Scholar 

  60. Patel O et al (2012) Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 13(9):857–863

    Article  CAS  PubMed  Google Scholar 

  61. Samygina VR et al (2011) Enhanced selectivity for sulfatide by engineered human glycolipid transfer protein. Structure 19(11):1644–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dasgupta S, Kumar V (2016) Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 68(8):665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sebode M et al (2019) Inflammatory phenotype of intrahepatic sulfatide-reactive type II NKT cells in humans with autoimmune hepatitis. Front Immunol 10:1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kanter JL et al (2006) Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12(1):138–143

    Article  CAS  PubMed  Google Scholar 

  65. Inoue T et al (2010) Sulfatides are associated with neointimal thickening after vascular injury. Atherosclerosis 211(1):291–296

    Article  CAS  PubMed  Google Scholar 

  66. Kyogashima M (2004) The role of sulfatide in thrombogenesis and haemostasis. Arch Biochem Biophys 426(2):157–162

    Article  CAS  PubMed  Google Scholar 

  67. Kyogashima M et al (1998) Sulfatide can markedly enhance thrombogenesis in rat deep vein thrombosis model. Glycoconj J 15(9):915–922

    Article  CAS  PubMed  Google Scholar 

  68. Minami A et al (2016) Improvement of neurological disorders in postmenopausal model rats by administration of royal jelly. Climacteric 19(6):568–573

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi T, Suzuki T (2015) Role of sulfatide in influenza A virus replication. Biol Pharm Bull 38(6):809–816

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi T et al (2013) Sulfatide regulates caspase-3-independent apoptosis of influenza A virus through viral PB1-F2 protein. PLoS ONE 8(4):e61092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takahashi T et al (2012) Sulfatide negatively regulates the fusion process of human parainfluenza virus type 3. J Biochem 152(4):373–380

    Article  CAS  PubMed  Google Scholar 

  72. Dos Santos DCM et al (2020) Serological biomarkers for monitoring response to treatment of pulmonary and extrapulmonary tuberculosis in children and adolescents. Tuberculosis (Edinb) 123:101960

    Article  PubMed  Google Scholar 

  73. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98(1):239–389

    Article  CAS  PubMed  Google Scholar 

  74. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21(7):2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giaume C et al (2021) Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev 101(1):93–145

    Article  CAS  PubMed  Google Scholar 

  76. Donoso M, et al. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells, 2022. 11(15).

  77. Malik S, Theis M, Eugenin EA (2017) Connexin43 containing gap junction channels facilitate HIV bystander toxicity: implications in neuroHIV. Front Mol Neurosci 10:404

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mestre ALG et al (2017) Extracellular electrophysiological measurements of cooperative signals in astrocytes populations. Front Neural Circuits 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mestre ALG et al (2017) Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations. Sci Rep 7(1):14284

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19(16):6897–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  82. Simard M et al (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254–9262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cotrina ML et al (2000) ATP-mediated glia signaling. J Neurosci 20(8):2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin JH et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1(6):494–500

    Article  CAS  PubMed  Google Scholar 

  85. Churchill MJ et al (2016) HIV reservoirs: what, where and how to target them. Nat Rev Microbiol 14(1):55–60

    Article  CAS  PubMed  Google Scholar 

  86. Bruner KM, Hosmane NN, Siliciano RF (2015) Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol 23(4):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sonti S, Sharma AL, Tyagi M (2021) HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 303:198523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Blazkova J et al (2021) Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. Nat Med 27(11):1893–1898

    Article  CAS  PubMed  Google Scholar 

  89. Woldemeskel BA, Kwaa AK, Blankson JN (2020) Viral reservoirs in elite controllers of HIV-1 infection: Implications for HIV cure strategies. EBioMedicine 62:103118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lorenzo-Redondo R et al (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530(7588):51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bandera A et al (2019) Phylogenies in ART: HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol 48:24–32

    Article  CAS  PubMed  Google Scholar 

  92. Salemi M, Rife B (2016) Phylogenetics and phyloanatomy of HIV/SIV intra-host compartments and reservoirs: the key role of the central nervous system. Curr HIV Res 14(2):110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by The National Institute of Mental Health grant, MH128082, the National Institute of Neurological Disorders and Stroke, NS105584, from the UTMB Sealy Institute for Vaccine Sciences and the UTMB Institute for Human Infection &Immunity (to EAE).

Author information

Authors and Affiliations

Authors

Contributions

Study concepts and design were undertaken by BP, and EAE Data acquisition and analysis were undertaken for DD BP and EAE Manuscript suggestions and writing was provided for all authors.

Corresponding authors

Correspondence to Brendan Prideaux or Eliseo A. Eugenin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was performed according to the principles of the Declaration of Helsinki, and all studies were reviewed and approved by the host institutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 295597 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, D., Barone, R., Di Felice, V. et al. Chronic brain damage in HIV-infected individuals under antiretroviral therapy is associated with viral reservoirs, sulfatide release, and compromised cell-to-cell communication. Cell. Mol. Life Sci. 80, 116 (2023). https://doi.org/10.1007/s00018-023-04757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04757-0

Keywords

Navigation