Log in

Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author upon reasonable request.

Abbreviations

Bax:

Bcl-2-associated X protein

Caspase-3:

Cysteiny aspartate specific proteinase-3

Co-IP:

Co-immunoprecipitation

IP:

Immunoprecipitation

DMSO:

Dimethyl sulfoxide

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HDACs:

Histone deacetylases

HDAC6:

Histone deacetylases 6

ICH:

Intracerebral hemorrhage

MDH1:

Malate dehydrogenase 1

MDA:

Malondialdehyde

mNSS:

Modified neurological severity score

NAD:

Nicotinamide adenine Dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

TubA:

Tubastatin A

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN et al (2020) Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141(9):e139–e596

    Article  PubMed  Google Scholar 

  2. Galyfos G, Sianou A, Filis K (2017) Cerebral hyperperfusion syndrome and intracranial hemorrhage after carotid endarterectomy or carotid stenting: a meta-analysis. J Neurol Sci 381:74–82

    Article  PubMed  Google Scholar 

  3. Kang M, Yao Y (2019) Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther 25(10):1075–1084

    Article  PubMed  PubMed Central  Google Scholar 

  4. Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid Med Cell Longev 2016:1203285

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev 2016:3215391

    Article  PubMed  Google Scholar 

  6. Yao Z, Bai Q, Wang G (2021) Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxid Med Cell Longev 2021:8815441

    Article  PubMed  PubMed Central  Google Scholar 

  7. Imai T, Matsubara H, Hara H (2021) Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage. J Cereb Blood Flow Metab: Official J Int Soc Cereb Blood Flow and Metab 41(7):1483–1500

    Article  CAS  Google Scholar 

  8. Kang R, Li R, Dai P, Li Z, Li Y, Li C (2019) Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut (Barking, Essex: 1987) 251:689–698

    Article  CAS  Google Scholar 

  9. Zheng J, Shi L, Liang F, Xu W, Li T, Gao L, Sun Z, Yu J, Zhang J (2018) Sirt3 Ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci 12:414

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leyk J, Daly C, Janssen-Bienhold U, Kennedy BN, Richter-Landsberg C (2017) HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness. Cell Death Dis 8(8):e3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Q, Li S, Zhou Z, Fu M, Yang X, Hao K, Liu Y (2020) HDAC6 inhibitor Cay10603 inhibits high glucose-induced oxidative stress, inflammation and apoptosis in retinal pigment epithelial cells via regulating NF-κB and NLRP3 inflammasome pathway. Gen Physiol Biophys 39(2):169–177

    Article  CAS  PubMed  Google Scholar 

  12. Shi Y, Xu L, Tang J, Fang L, Ma S, Ma X, Nie J, Pi X, Qiu A, Zhuang S et al (2017) Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol 312(3):F502–F515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leucker TM, Nomura Y, Kim JH, Bhatta A, Wang V, Wecker A, Jandu S, Santhanam L, Berkowitz D, Romer L et al (2017) Cystathionine γ-lyase protects vascular endothelium: a role for inhibition of histone deacetylase 6. Am J Physiol Heart Circ Physiol 312(4):H711–H720

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Leng Y, Wang J, Liao HM, Bergman J, Leeds P, Kozikowski A, Chuang DM (2016) Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep 6:19626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Zhao Y, Shi J, Ren Z, Chen F, Tang W (2019) Histone deacetylase 6 interference protects mice against experimental stroke-induced brain injury via activating Nrf2/HO-1 pathway. Animal Cells Syst 23(3):192–199

    Article  CAS  Google Scholar 

  16. Kim EY, Kim WK, Kang HJ, Kim JH, Chung SJ, Seo YS, Park SG, Lee SC, Bae KH (2012) Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. J Lipid Res 53(9):1864–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Broeks MH, Shamseldin HE, Alhashem A, Hashem M, Abdulwahab F, Alshedi T, Alobaid I, Zwartkruis F, Westland D, Fuchs S et al (2019) MDH1 deficiency is a metabolic disorder of the malate-aspartate shuttle associated with early onset severe encephalopathy. Hum Genet 138(11–12):1247–1257

    Article  CAS  PubMed  Google Scholar 

  18. Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, Wang W, Yin H, Hao Q, Zhou C et al (2020) NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation 17(1):364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Ni W, Jiang H, Lei Y, Su J, Gu Y, Zhou L (2018) Histone deacetylase inhibitor scriptaid alleviated neurological dysfunction after experimental intracerebral hemorrhage in mice. Behav Neurol 2018:6583267

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ye XC, Hu JX, Li L, Li Q, Tang FL, Lin S, Sun D, Sun XD, Cui GY, Mei L et al (2018) Astrocytic Lrp4 (low-density lipoprotein receptor-related protein 4) contributes to ischemia-induced brain injury by regulating ATP release and adenosine-A(2A)R (adenosine A2A receptor) signaling. Stroke 49(1):165–174

    Article  CAS  PubMed  Google Scholar 

  22. Leng Y, Wu Y, Lei S, Zhou B, Qiu Z, Wang K, **a Z (2018) Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation. Oxid Med Cell Longev 2018:9494052

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi H, Kim HJ, Kim J, Kim S, Yang J, Lee W, Park Y, Hyeon SJ, Lee DS, Ryu H et al (2017) Increased acetylation of peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport. Mol Neurodegener 12(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang WB, Zhang HY, Wang Y, Jiao FZ, Wang LW, Gong ZJ (2019) Quantitative proteomic analysis reveals the sites related to acetylation and mechanism of ACY-1215 in acute liver failure mice. Front Pharmacol 10:653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan L, Wang Z, Liu L, Jian X (2015) Inhibiting histone deacetylase 6 partly protects cultured rat cortical neurons from oxygen-glucose deprivation-induced necroptosis. Mol Med Rep 12(2):2661–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132(31):10842–10846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ran J, Yang Y, Li D, Liu M, Zhou J (2015) Deacetylation of α-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci Rep 5:12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang M, **ang S, Joo HY, Wang L, Williams KA, Liu W, Hu C, Tong D, Haakenson J, Wang C et al (2014) HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol Cell 55(1):31–46

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P, Miller-Randolph S, Passino R et al (2019) Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 218(6):1871–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joh T, Takeshima H, Tsuzuki T, Setoyama C, Shimada K, Tanase S, Kuramitsu S, Kagamiyama H, Morino Y (1987) Cloning and sequence analysis of cDNAs encoding mammalian cytosolic malate dehydrogenase. Comparison of the amino acid sequences of mammalian and bacterial malate dehydrogenase. J Biol Chem 262(31):15127–15131

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka T, Inazawa J, Nakamura Y (1996) Molecular cloning and map** of a human cDNA for cytosolic malate dehydrogenase (MDH1). Genomics 32(1):128–130

    Article  CAS  PubMed  Google Scholar 

  32. Lo AS, Liew CT, Ngai SM, Tsui SK, Fung KP, Lee CY, Waye MM (2005) Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1). J Cell Biochem 94(4):763–773

    Article  CAS  PubMed  Google Scholar 

  33. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, Gao X, Xu YY, Zou SW, Liu YB et al (2016) Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64(4):673–687

    Article  CAS  PubMed  Google Scholar 

  35. Lee SM, Dho SH, Ju SK, Maeng JS, Kim JY, Kwon KS (2012) Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 13(5):525–536

    Article  CAS  PubMed  Google Scholar 

  36. Kim BS, Lee K, Jung HJ, Bhattarai D, Kwon HJ (2015) HIF-1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1. Biochem Biophys Res Commun 458(1):14–20

    Article  CAS  PubMed  Google Scholar 

  37. Beurel E (2011) HDAC6 regulates LPS-tolerance in astrocytes. PLoS One 6(10):e25804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McAlpin BR, Mahalingam R, Singh AK, Dharmaraj S, Chrisikos TT, Boukelmoune N, Kavelaars A, Heijnen CJ (2022) HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics 12(2):603–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu S, Chen H, Ni H, Dai Q (2021) Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis 317:1–9

    Article  CAS  PubMed  Google Scholar 

  40. Xu P, Hong Y, **e Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J et al (2021) TREM-1 exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res 12(4):643–659

    Article  CAS  PubMed  Google Scholar 

  41. Collins MK, Marvel J, Malde P, Lopez-Rivas A (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 176(4):1043–1051

    Article  CAS  PubMed  Google Scholar 

  42. Fukuda K, Kojiro M, Chiu JF (1993) Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: apoptosis or necrosis? Am J Pathol 142(3):935–946

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Youn GS, Ju SM, Choi SY, Park J (2015) HDAC6 mediates HIV-1 tat-induced proinflammatory responses by regulating MAPK-NF-kappaB/AP-1 pathways in astrocytes. Glia 63(11):1953–1965

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of Dr Cui’s laboratory for their kind suggestions.

Funding

This work was supported by grants from National Natural Science Foundation of China (81571210, 81771282, and 82171305) and Xuzhou Innovation Capacity Building Program (KC19239) to Dr. Guiyun Cui, by grants from the National Natural Science Foundation of China (81971134), the Natural Science Foundation of Jiangsu Province (BK20191152), Medical Scientific Research Project of Jiangsu Provincial Health Commission (ZDB2020017), and Xuzhou Key Research and Development Program (KC19131) to Dr. **nchun Ye, by grants from the National Natural Science Foundation of China (82001276) to Dr. Hu, and by grants from Development Fund of Affiliated Hospital of Xuzhou Medical University (XYFM2020033) to Miao Wang.

Author information

Authors and Affiliations

Authors

Contributions

GYC and MW: contributed to research design and manuscript writing. MW: executed most experiments. CZ: contributed to data acquirement and analyzation. LY: assisted experiments accomplishment. WJM and BCL: helped with most of the mouse experiments. YW: assisted protein immunoprecipitation. WFW and MYZ: assisted protein extraction and animal experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Miao Wang or Guiyun Cui.

Ethics declarations

Conflict of interest

Authors declare no competing financial interests.

Study approval

All animal experiments carried out were approved by the Jiangsu Provincial Animal Care, and all mice procedures were approved by the institutional Animal Use and Care Committee of XuZhou Medical University.

Consent for publication

All authors have read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhou, C., Yu, L. et al. Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell. Mol. Life Sci. 79, 356 (2022). https://doi.org/10.1007/s00018-022-04341-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04341-y

Keywords

Navigation