Log in

A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We identified a mushroom-derived protein, maistero-2 that specifically binds 3-hydroxy sterol including cholesterol (Chol). Maistero-2 bound lipid mixture in Chol-dependent manner with a binding threshold of around 30%. Changing lipid composition did not significantly affect the threshold concentration. EGFP-maistero-2 labeled cell surface and intracellular organelle Chol with higher sensitivity than that of well-established Chol probe, D4 fragment of perfringolysin O. EGFP-maistero-2 revealed increase of cell surface Chol during neurite outgrowth and heterogeneous Chol distribution between CD63-positive and LAMP1-positive late endosomes/lysosomes. The absence of strictly conserved Thr-Leu pair present in Chol-dependent cytolysins suggests a distinct Chol-binding mechanism for maistero-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and materials availability

The data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALO:

Anthrolysin O

BSA:

Bovine serum albumin

Chol:

Cholesterol

CD:

Circular dichroism

CDC:

Cholesterol-dependent cytolysin

CHO:

Chinese hamster ovary

CRAC:

Cholesterol recognition/interaction amino acid consensus

DIC:

Differential interference contrast

DMEM:

Dulbecco’s modified Eagle’s medium

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

EGFP:

Enhanced green fluorescent protein

ELISA:

Enzyme-linked immunosorbent assay

ER:

Endoplasmic reticulum

FCS:

Fetal calf serum

LDL:

Low density lipoprotein

mAb:

Mouse monoclonal antibody

MβCD:

Methyl-beta-cyclodextrin

MLV:

Multilamellar vesicle

NBD-DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2–1,3-benzoxadiazol-4-yl)

NBD-DPPE:

1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2–1,3-benzoxadiazol-4-yl)

NPC:

Niemann–Pick disease type C

PBS:

Phosphate buffered saline

PC:

Phosphatidylcholine

PFA:

Paraformaldehyde

PFO:

Perfringolysin O

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

QCM:

Quartz crystal microbalance

SM:

Sphingomyelin

SUV:

Small unilamellar vesicle

References

  1. Ridgway ND, Zhao K (2018) Cholesterol transfer at endosomal-organelle membrane contact sites. Curr Opin Lipidol 29:212–217. https://doi.org/10.1097/MOL.0000000000000506

    Article  CAS  PubMed  Google Scholar 

  2. Steck TL, Lange Y (2018) Transverse distribution of plasma membrane bilayer cholesterol: picking sides. Traffic 19:750–760. https://doi.org/10.1111/tra.12586

    Article  CAS  PubMed  Google Scholar 

  3. Norman AW, Demel RA, de Kruyff B, van Deenen LL (1972) Studies on the biological properties of polyene antibiotics. evidence for the direct interaction of filipin with cholesterol. J Biol Chem 247:1918–1929

    Article  CAS  Google Scholar 

  4. Elias PM, Friend DS, Goerke J (1979) Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem 27:1247–1260. https://doi.org/10.1177/27.9.479568

    Article  CAS  PubMed  Google Scholar 

  5. Simionescu N, Lupu F, Simionescu M (1983) Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium. J Cell Biol 97:1592–1600

    Article  CAS  Google Scholar 

  6. Arthur JR, Heinecke KA, Seyfried TN (2011) Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J Lipid Res 52:1345–1351. https://doi.org/10.1194/jlr.M012633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishitsuka R, Saito T, Osada H, Ohno-Iwashita Y, Kobayashi T (2011) Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution. J Lipid Res 52:2084–2094. https://doi.org/10.1194/jlr.D018184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kishimoto T, Ishitsuka R, Kobayashi T (2016) Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta 1861:812–829. https://doi.org/10.1016/j.bbalip.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  9. Radhakrishnan A, Rohatgi R, Siebold C (2020) Cholesterol access in cellular membranes controls Hedgehog signaling. Nat Chem Biol 16:1303–1313. https://doi.org/10.1038/s41589-020-00678-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans JC, Johnstone BA, Lawrence SL, Morton CJ, Christie MP, Parker MW, Tweten RK (2020) A key motif in the cholesterol-dependent cytolysins reveals a large family of related proteins. MBio 11:e02351-e2420. https://doi.org/10.1128/mBio.02351-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morton CJ, Sani MA, Parker MW, Separovic F (2019) Cholesterol-dependent cytolysins: membrane and protein structural requirements for pore formation. Chem Rev 119:7721–7736. https://doi.org/10.1021/acs.chemrev.9b00090

    Article  CAS  PubMed  Google Scholar 

  12. Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T (2013) Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J Lipid Res 54:2933–2943. https://doi.org/10.1194/jlr.D041731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skocaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Macek P, Veranic P, Sepcic K (2014) Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE 9:e92783. https://doi.org/10.1371/journal.pone.0092783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A (2019) Molecular discrimination between two conformations of sphingomyelin in plasma membranes. Cell 176(1040–1053):e1017. https://doi.org/10.1016/j.cell.2018.12.042

    Article  CAS  Google Scholar 

  15. Bhat HB, Ishitsuka R, Inaba T, Murate M, Abe M, Makino A, Kohyama-Koganeya A, Nagao K, Kurahashi A, Kishimoto T, Tahara M, Yamano A, Nagamune K, Hirabayashi Y, Juni N, Umeda M, Fujimori F, Nishibori K, Yamaji-Hasegawa A, Greimel P, Kobayashi T (2015) Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J 29:3920–3934. https://doi.org/10.1096/fj.15-272112

    Article  CAS  PubMed  Google Scholar 

  16. Novak M, Krpan T, Panevska A, Shewell LK, Day CJ, Jennings MP, Guella G, Sepčić K (2020) Binding specificity of ostreolysin A6 towards Sf9 insect cell lipids. Biochim Biophys Acta 1862:183307. https://doi.org/10.1016/j.bbamem.2020.183307

    Article  CAS  Google Scholar 

  17. Ohno-Iwashita Y, Shimada Y, Waheed AA, Hayashi M, Inomata M, Nakamura M, Maruya M, Iwashita S (2004) Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10:125–134. https://doi.org/10.1016/j.anaerobe.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Abe M, Makino A, Hullin-Matsuda F, Kamijo K, Ohno-Iwashita Y, Hanada K, Mizuno H, Miyawaki A, Kobayashi T (2012) A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol 4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol Cell Biol 32:1396–1407. https://doi.org/10.1128/MCB.06113-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaji-Hasegawa A, Hullin-Matsuda F, Greimel P, Kobayashi T (2016) Pore-forming toxins: properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. Biochim Biophys Acta 1858:576–592. https://doi.org/10.1016/j.bbamem.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  20. Maekawa M, Yang Y, Fairn GD (2016) Perfringolysin O theta toxin as a tool to monitor the distribution and inhomogeneity of cholesterol in cellular membranes. Toxins 8:67. https://doi.org/10.3390/toxins8030067

    Article  CAS  PubMed Central  Google Scholar 

  21. Maekawa M (2017) Domain 4 (D4) of perfringolysin O to visualize cholesterol in cellular membranes-the update. Sensors 17:504. https://doi.org/10.3390/s17030504

    Article  CAS  PubMed Central  Google Scholar 

  22. Endapally S, Infante RE, Radhakrishnan A (2019) Monitoring and modulating intracellular cholesterol trafficking using ALOD4, a cholesterol-binding protein. Methods Mol Biol 1949:153–163. https://doi.org/10.1007/978-1-4939-9136-5_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abe M, Kobayashi T (2021) Imaging cholesterol depletion at the plasma membrane by methyl-beta-cyclodextrin. J Lipid Res 62:100077. https://doi.org/10.1016/j.jlr.2021.100077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M (2010) Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem 51:597–621. https://doi.org/10.1007/978-90-481-8622-8_22

    Article  CAS  PubMed  Google Scholar 

  25. Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP (2012) Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry 51:3373–3382. https://doi.org/10.1021/bi3003132

    Article  CAS  PubMed  Google Scholar 

  26. Heijnen HF, Van Lier M, Waaijenborg S, Ohno-Iwashita Y, Waheed AA, Inomata M, Gorter G, Mobius W, Akkerman JW, Slot JW (2003) Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J Thromb Haemost 1:1161–1173. https://doi.org/10.1046/j.1538-7836.2003.00316.x

    Article  CAS  PubMed  Google Scholar 

  27. Mobius W, Van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222–231. https://doi.org/10.1034/j.1600-0854.2003.00072.x

    Article  CAS  PubMed  Google Scholar 

  28. Venugopal S, Martinez-Arguelles DB, Chebbi S, Hullin-Matsuda F, Kobayashi T, Papadopoulos V (2016) Plasma membrane origin of the steroidogenic pool of cholesterol used in hormone-induced acute steroid formation in Leydig Cells. J Biol Chem 291:26109–26125. https://doi.org/10.1074/jbc.M116.740928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kishimoto T, Tomishige N, Murate M, Ishitsuka R, Schaller H, Mely Y, Ueda K, Kobayashi T (2020) Cholesterol asymmetry at the tip of filopodia during cell adhesion. FASEB J 34:6185–6197. https://doi.org/10.1096/fj.201900065RR

    Article  CAS  PubMed  Google Scholar 

  30. Maekawa M, Fairn GD (2015) Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci 128:1422–1433. https://doi.org/10.1242/jcs.164715

    Article  CAS  PubMed  Google Scholar 

  31. Liu SL, Sheng R, Jung JH, Wang L, Stec E, O’Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K, Ueda K, Levitan I, Kim KP, Cho W (2017) Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13:268–274. https://doi.org/10.1038/nchembio.2268

    Article  CAS  PubMed  Google Scholar 

  32. Courtney KC, Fung KY, Maxfield FR, Fairn GD, Zha X (2018) Comment on “Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol.” Elife 7:e38493. https://doi.org/10.7554/eLife.38493

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nelson LD, Johnson AE, London E (2008) How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J Biol Chem 283:4632–4642. https://doi.org/10.1074/jbc.M709483200

    Article  CAS  PubMed  Google Scholar 

  34. Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH (2017) Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. Elife 6:e23355. https://doi.org/10.7554/eLife.23355

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schoop V, Martello A, Eden ER, Hoglinger D (2021) Cellular cholesterol and how to find it. Biochim Biophys Acta 1866:158989. https://doi.org/10.1016/j.bbalip.2021.158989

    Article  CAS  Google Scholar 

  36. Makino A, Abe M, Ishitsuka R, Murate M, Kishimoto T, Sakai S, Hullin-Matsuda F, Shimada Y, Inaba T, Miyatake H, Tanaka H, Kurahashi A, Pack CG, Kasai RS, Kubo S, Schieber NL, Dohmae N, Tochio N, Hagiwara K, Sasaki Y, Aida Y, Fujimori F, Kigawa T, Nishibori K, Parton RG, Kusumi A, Sako Y, Anderluh G, Yamashita M, Kobayashi T, Greimel P, Kobayashi T (2017) A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C. FASEB J 31(4):1301–1322. https://doi.org/10.1096/fj.201500075R

    Article  CAS  PubMed  Google Scholar 

  37. Masaki T, Tanabe M, Nakamura K, Soejima M (1981) Studies on a new proteolytic enzyme from A chromobacter lyticus M497–1. I. Purification and some enzymatic properties. Biochim Biophys Acta 660:44–50. https://doi.org/10.1016/0005-2744(81)90106-6

    Article  CAS  PubMed  Google Scholar 

  38. Sato M, Kurahashi A, Takeda A, Uemura Y, Ezaki M, Nishi T, Nishibori K, Fujimori F (2013) High quality draft genome sequence analysis of the edible mushroom Grifola frondosa. Bull Tokyo Kasei Univ 53:17–30

    CAS  Google Scholar 

  39. Kurahashi A, Nishibori K, Fujimori F (2012) Analysis of gene expression profiles during cultivation of Grifola frondosa. Bull Tokyo Kasei Univ 52:17–32

    CAS  Google Scholar 

  40. Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato SB, Terada N, Ohno S, Kiyokawa E, Umeda M, Kobayashi T (2003) Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 278:22762–22770. https://doi.org/10.1074/jbc.M213209200

    Article  CAS  PubMed  Google Scholar 

  41. Tomishige N, Murate M, Didier P, Richert L, Mely Y, Kobayashi T (2021) The use of pore-forming toxins to image lipids and lipid domains. Methods Enzymol 649:503–542. https://doi.org/10.1016/bs.mie.2021.01.019

    Article  CAS  PubMed  Google Scholar 

  42. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  43. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    Article  CAS  Google Scholar 

  44. Lowry RR (1968) Ferric chloride spray detector for cholesterol and cholesteryl esters on thin-layer chromatograms. J Lipid Res 9:397

    Article  CAS  Google Scholar 

  45. Yang JT, Wu CS, Martinez HM (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol 130:208–269. https://doi.org/10.1016/0076-6879(86)30013-2

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T (2007) Cholesterol controls lipid endocytosis through Rab11. Mol Biol Cell 18:2667–2677. https://doi.org/10.1091/mbc.e06-10-0924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He C, Hu X, Jung RS, Weston TA, Sandoval NP, Tontonoz P, Kilburn MR, Fong LG, Young SG, Jiang H (2017) High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc Natl Acad Sci USA 114:2000–2005. https://doi.org/10.1073/pnas.1621432114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moe PC, Heuck AP (2010) Phospholipid hydrolysis caused by Clostridium perfringens alpha-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Biochemistry 49:9498–9507. https://doi.org/10.1021/bi1013886

    Article  CAS  PubMed  Google Scholar 

  49. Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  CAS  Google Scholar 

  50. Murate M, Abe M, Kasahara K, Iwabuchi K, Umeda M, Kobayashi T (2015) Transbilayer distribution of lipids at nano scale. J Cell Sci 128:1627–1638. https://doi.org/10.1242/jcs.163105

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi T, Menon AK (2018) Transbilayer lipid asymmetry. Curr Biol 28:R386–R391. https://doi.org/10.1016/j.cub.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  52. Cezanne L, Navarro L, Tocanne JF (1992) Isolation of the plasma membrane and organelles from Chinese hamster ovary cells. Biochim Biophys Acta 1112(2):205–214. https://doi.org/10.1016/0005-2736(92)90393-z

    Article  CAS  PubMed  Google Scholar 

  53. Gaibelet G, Millot C, Lebrun C, Ravault S, Sauliere A, Andre A, Lagane B, Lopez A (2008) Cholesterol content drives distinct pharmacological behaviours of micro-opioid receptor in different microdomains of the CHO plasma membrane. Mol Mem Biol 25:423–435. https://doi.org/10.1080/09687680802203380

    Article  CAS  Google Scholar 

  54. Alouf JE, Geoffroy C, Pattus F, Verger R (1984) Surface properties of bacterial sulfhydryl-activated cytolytic toxins. Interaction with monomolecular films of phosphatidylcholine and various sterols. Eur J Biochem 141(1):205–210. https://doi.org/10.1111/j.1432-1033.1984.tb08176.x

    Article  CAS  PubMed  Google Scholar 

  55. McIntyre JC, Sleight RG (1991) Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30:11819–11827. https://doi.org/10.1021/bi00115a012

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650. https://doi.org/10.1038/359647a0

    Article  CAS  PubMed  Google Scholar 

  57. Abe M, Makino A, Murate M, Hullin-Matsuda F, Yanagawa M, Sako Y, Kobayashi T (2021) PMP2/FABP8 induces PI(4,5)P2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Rep 37:109935. https://doi.org/10.1016/j.celrep.2021.109935

    Article  CAS  PubMed  Google Scholar 

  58. Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203. https://doi.org/10.1046/j.1432-1033.2002.03338.x

    Article  CAS  PubMed  Google Scholar 

  59. Taleski G, Schuhmacher D, Su H, Sontag JM, Sontag E (2021) Disturbances in PP2A methylation and one-carbon metabolism compromise Fyn distribution, neuritogenesis, and APP regulation. J Biol Chem 296:100237. https://doi.org/10.1074/jbc.RA120.016069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B lymphocytes. J Biol Chem 273:20121–20127. https://doi.org/10.1074/jbc.273.32.20121

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi T, Vischer UM, Rosnoblet C, Lebrand C, Lindsay M, Parton RG, Kruithof EK, Gruenberg J (2000) The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 11:1829–1843. https://doi.org/10.1091/mbc.11.5.1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kobayashi T, Beuchat MH, Chevallier J, Makino A, Mayran N, Escola JM, Lebrand C, Cosson P, Gruenberg J (2002) Separation and characterization of late endosomal membrane domains. J Biol Chem 277:32157–32164. https://doi.org/10.1074/jbc.M202838200

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J (1998) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392:193–197. https://doi.org/10.1038/32440

    Article  CAS  PubMed  Google Scholar 

  64. Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH (2004) Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. Int Rev Cyt 241:1–51. https://doi.org/10.1016/S0074-7696(04)41001-8

    Article  Google Scholar 

  65. Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1:113–118. https://doi.org/10.1038/10084

    Article  CAS  PubMed  Google Scholar 

  66. Mukherjee S, Maxfield FR (2004) Lipid and cholesterol trafficking in NPC. Biochim Biophys Acta 1685:28–37. https://doi.org/10.1016/j.bbalip.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  67. McCauliff LA, Langan A, Li R, Ilnytska O, Bose D, Waghalter M, Lai K, Kahn PC, Storch J (2019) Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid. Elife 8:e50832. https://doi.org/10.7554/eLife.50832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC (2001) The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem 276:4261–4269. https://doi.org/10.1074/jbc.M006279200

    Article  CAS  PubMed  Google Scholar 

  69. Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM (2000) Localization of the murine Niemann-Pick C1 protein to two distinct intracellular compartments. J Lipid Res 41:673–687

    Article  CAS  Google Scholar 

  70. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346. https://doi.org/10.1073/pnas.0911581107

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinol 139:4991–4997. https://doi.org/10.1210/endo.139.12.6390

    Article  CAS  Google Scholar 

  72. Fantini J, Di Scala C, Baier CJ, Barrantes FJ (2016) Molecular mechanisms of protein-cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids 199:52–60. https://doi.org/10.1016/j.chemphyslip.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  73. Kiyokawa E, Makino A, Ishii K, Otsuka N, Yamaji-Hasegawa A, Kobayashi T (2004) Recognition of sphingomyelin by lysenin and lysenin-related proteins. Biochemistry 43:9766–9773. https://doi.org/10.1021/bi049561j

    Article  CAS  PubMed  Google Scholar 

  74. Hullin-Matsuda F, Murate M, Kobayashi T (2018) Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chem Phys Lipids 216:132–141. https://doi.org/10.1016/j.chemphyslip.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  75. Panevska A, Skočaj M, Križaj I, Maček P, Sepčić K (2019) Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. Biochim Biophys Acta 1861:1284–1292. https://doi.org/10.1016/j.bbamem.2019.05.001

    Article  CAS  Google Scholar 

  76. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  CAS  Google Scholar 

  77. Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656. https://doi.org/10.1074/jbc.M807631200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berne S, Lah L, Sepčić K (2009) Aegerolysins: structure, function, and putative biological role. Prot Sci 18:694–706. https://doi.org/10.1002/pro.85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms. Nozomi Yoshida for excellent technical assistance. We thank Dr. Takuma Kishimoto for providing mCherry-D4. CD spectral measurements were supported by Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS). We are grateful to Dr. Hubert Schaller, Institut de Biologie Moléculaire des Plantes, UPR 2357, CNRS, Université de Strasbourg, for providing us sterols.

Funding

Agence Nationale pour la Recherche (ANR-19-CE16-0012–02 to T.K.). Agence Nationale de Recherche sur le Sida et les Hépatites virale (18365 to T.K.). Ligue Contre le Cancer (to T.K.). Vaincre les Maladies Lysosomales (19/LBPH/S44 to T.K.). Seed Money, Assemblée du groupement européen de coopération territoriale (GECT) Eucor (to T.K.). Japan Society for the Promotion of Science (JSPS) (18K06648 to A. Y-H). RIKEN Integrated Lipidology Program (to A. Y-H, P.G. and T.K.). RIKEN Glycolipidologue Initiative Program (to T.K. Y.S. and P.G.). Institut national de la santé et de la recherche médicale (Inserm) (to T.K.). Centre national de la recherche scientifique (CNRS) (to T.K.). Université de Strasbourg (to T.K.)

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: AY-H, TK. Investigation: AY-H, MM, TI, ND, MS, FF, PG. Methodology: TI, ND, FF. Supervision: TK. Writing-original draft: AY-H, PG, TK. Writing-review and editing: AY-H, MM, TI, ND, MS, FF, YS, PG, TK.

Corresponding authors

Correspondence to Akiko Yamaji-Hasegawa or Toshihide Kobayashi.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agreed on the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 9147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaji-Hasegawa, A., Murate, M., Inaba, T. et al. A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cell. Mol. Life Sci. 79, 324 (2022). https://doi.org/10.1007/s00018-022-04339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04339-6

Keywords

Navigation