Log in

Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The lipidomics and proteomics mass spectrometry data are publicly available through the MassIVE repository under the following accession numbers: MSV000088672 and MSV000088738.

References

  1. Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nature Rev Microbiol 16:32–46

    Article  CAS  Google Scholar 

  2. Duze ST, Marimani M, Patel M (2021) Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 97:103758

    Article  CAS  PubMed  Google Scholar 

  3. Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17:882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28

    Article  CAS  PubMed  Google Scholar 

  5. Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  6. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: develo** innate immunity for food. Nature Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  7. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang W, Zhang Z, Han X, Wang J, Tang J, Dong S, Wang E (2002) Concentration-dependent behavior of nisin interaction with supported bilayer lipid membrane. Biophys Chem 99:271–279

    Article  CAS  PubMed  Google Scholar 

  9. Prince A, Sandhu P, Ror P, Dash E, Sharma S, Arakha M, Jha S, Akhter Y, Saleem M (2016) Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep 6:37908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu S, Yu PL, Wheeler D, Flint S (2018) Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with nisin. J Global Antimicrob Resist 15:25–31

    Article  Google Scholar 

  11. Jiang X, Geng Y, Ren S, Yu T, Li Y, Liu G, Wang H, Meng H, Shi L (2019) The VirAB-VirSR-AnrAB multicomponent system is involved in resistance of Listeria monocytogenes EGD-e to cephalosporins, bacitracin, nisin, benzalkonium chloride, and ethidium bromide. Appl Environ Microbiol 85:01470–01519

    Google Scholar 

  12. Malekmohammadi S, Kodjovi KK, Sherwood J, Bergholz TM (2017) Genetic and environmental factors influence Listeria monocytogenes nisin resistance. J Appl Microbiol 123:262–270

    Article  CAS  PubMed  Google Scholar 

  13. Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJ, Njage PM, Tasara T (2020) The analysis of field strains isolated from food, animal and clinical sources uncovers natural mutations in Listeria monocytogenes nisin resistance genes. Front Microbiol 11:549531

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stincone P, Miyamoto KN, Timbe PPR, Lieske I, Brandelli A (2020) Nisin influence on the expression of Listeria monocytogenes surface proteins. J Proteom 226:103906

    Article  CAS  Google Scholar 

  15. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  16. Stincone P, Veras FF, Pereira JQ, Mayer FQ, Varela APM, Brandelli A (2020) Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiol Res 238:126515

    Article  CAS  PubMed  Google Scholar 

  17. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901

    Article  CAS  Google Scholar 

  18. Medeot DB, Fernandez M, Morales GM, Jofré E (2020) Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo HS, Villaruz AE, Glose KA, Fisher EL, Hunt RL, Li B, Chiou J, Pharkjaksu S, Khongthong S, Cheung GYC, Kiratisin P, Otto M (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562:532–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI (2019) Gram-Positive Pathogens, 3rd edn. ASM Press, Washington DC

    Book  Google Scholar 

  21. Crandall AD, Montville TJ (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahl HG, Shai Y (2015) Bacterial resistance to antimicrobial peptides. Biochim Biophys Acta 1848:3019–3020

    Article  CAS  PubMed  Google Scholar 

  23. Omardien S, Brul S, Zaat SA (2016) Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Front Cell Dev Biol 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee TH, Hall KN, Aguilar MI (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 16:25–39

    Article  CAS  PubMed  Google Scholar 

  25. Sani MA, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49:1130–1138

    Article  CAS  PubMed  Google Scholar 

  26. Horn JN, Cravens A, Grossfield A (2013) Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics. Biophys J 105:1612–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sur S, Romo TD, Grossfield A (2018) Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics. J Phys Chem B 122:2219–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donnarumma D, Maestri C, Giammarinaro PI, Capriotti L, Bartolini E, Veggi D, Petracca R, Scarselli M, Norais N (2018) Native state organization of outer membrane porins unraveled by HDx-MS. J Proteome Res 17:1794–1800

    Article  CAS  PubMed  Google Scholar 

  29. Brauge T, Sadovskaya I, Faille C, Benezech T, Maes E, Guerardel Y, Midelet-Bourdin G (2016) Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix. FEMS Microbiol Lett 363(2):229

    Article  CAS  Google Scholar 

  30. Silva S, Teixeira P, Oliveira R, Azeredo J (2008) Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J Food Protec 71:1379–1385

    Article  Google Scholar 

  31. Kocot AM, Olszewska MA (2017) Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT Food Sci Technol 84:47–57

    Article  CAS  Google Scholar 

  32. Motta AS, Flores FS, Souto AA, Brandelli A (2008) Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 93:275–284

    Article  CAS  PubMed  Google Scholar 

  33. Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K, Holmes EA, McLean K, Salipante SJ, Werth BJ, Xu L (2020) Occurrence of cross-resistance and β-lactam seesaw effect in glycopeptide-, lipopeptide-and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother 75:1182–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kováčik J, Micalizzi G, Dresler S, Wójciak-Kosiord M, Ragosta E, Mondello L (2020) The opposite nitric oxide modulators do not lead to the opposite changes of metabolites under cadmium excess. J Plant Physiol 252:153228

    Article  PubMed  CAS  Google Scholar 

  35. Rigano F, Arena P, Mangraviti D, Donnarumma D, Dugo P, Donato P, Mondello L, Micalizzi G (2021) Identification of high-value generating molecules from the wastes of tuna fishery industry by liquid chromatography and gas chromatography hyphenated techniques with automated sample preparation. J Sep Sci 44:1571

    Article  CAS  PubMed  Google Scholar 

  36. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CRH, Russell DW, Subramaniam S (2007) Lmsd: Lipid maps structure database. Nucleic Acids Res 35:D527–D532

    Article  CAS  PubMed  Google Scholar 

  37. Adusumilli R, Mallick P (2017) Data conversion with ProteoWizard msConvert. In: Comai L, Katz J, Mallick P (eds) Proteomics: Methods in Enzymology. Springer, NY, pp 339–368

    Chapter  Google Scholar 

  38. Petras D, Phelan VV, Acharya D, Allen AE, Aron AT, Bandeira N et al (2021) GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Meth 19:134–136

    Article  CAS  Google Scholar 

  39. Pinilla CMB, Stincone P, Brandelli A (2021) Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. Int J Food Microbiol 346:109170

    Article  CAS  PubMed  Google Scholar 

  40. Stincone P, Comerlato CB, Brandelli A (2021) Proteomic analysis of Listeria monocytogenes exposed to free and nanostructured antimicrobial lipopeptides. Mol Omics 17:426–437

    Article  CAS  PubMed  Google Scholar 

  41. Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protoc 3:1630–1638

    Article  Google Scholar 

  42. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stage tips. Nature Protoc 2:1896

    Article  CAS  Google Scholar 

  43. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnol 26:1367–1372

    Article  CAS  Google Scholar 

  44. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  45. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899

    Article  PubMed  Google Scholar 

  46. Chong IG, Jun CH (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78:103–112

    Article  CAS  Google Scholar 

  47. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  48. Martínez B, Rodríguez A (2005) Antimicrobial susceptibility of nisin resistant Listeria monocytogenes of dairy origin. FEMS Microbiol Lett 252:67–72

    Article  PubMed  CAS  Google Scholar 

  49. Naghmouchi K, Drider D, Hammami R, Fliss I (2008) Effect of antimicrobial peptides divergicin M35 and nisin A on Listeria monocytogenes LSD530 potassium channels. Curr Microbiol 56:609–612

    Article  CAS  PubMed  Google Scholar 

  50. Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Meth 52:149–182

    Article  CAS  Google Scholar 

  52. Gianotti A, Serrazanetti D, Kamdem SS, Guerzoni ME (2008) Involvement of cell fatty acid composition and lipid metabolism in adhesion mechanism of Listeria monocytogenes. Int J Food Microbiol 123:9–17

    Article  CAS  PubMed  Google Scholar 

  53. Dubois-Brissonnet F, Trotier E, Briandet R (2016) The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front Microbiol 7:1673

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tatituri RV, Wolf BJ, Brenner MB, Turk J, Hsu FF (2015) Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization. Anal Bioanal Chem 407:2519–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Furse S, Egmond MR, Killian JA (2015) Isolation of lipids from biological samples. Mol Membr Biol 32:55–64

    Article  CAS  PubMed  Google Scholar 

  56. Furse S, Jakubec M, Rise F, Williams HE, Rees CED, Halskau Ø (2017) Evidence that Listeria innocua modulates its membrane’s stored curvature elastic stress, but not fluidity, through the cell cycle. Sci Rep 7:8012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Webb AJ, Karatsa-Dodgson M, Gründling A (2009) Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol Microbiol 74:299–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14

    Article  CAS  PubMed  Google Scholar 

  59. Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L (2006) The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 62:1325–1339

    Article  CAS  PubMed  Google Scholar 

  60. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Theilacker C, Sava I, Sanchez-Carballo P, Bao Y, Kropec A, Grohmann E, Holst O, Huebner J (2011) Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiol 11:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wikström M, **e J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander Å, Dowhan W (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J Biol Chem 279:10484–10493

    Article  PubMed  CAS  Google Scholar 

  63. Edman M, Berg S, Storm P, Wikström M, Vikström S, Öhman A, Wieslander Å (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278:8420–8428

    Article  CAS  PubMed  Google Scholar 

  64. Ge C, Gómez-Llobregat J, Skwark MJ, Ruysschaert JM, Wieslander Å, Lindén M (2014) Membrane remodeling capacity of a vesicle-inducing glycosyltransferase. FEBS J 281:3667–3684

    Article  CAS  PubMed  Google Scholar 

  65. Tadmor K, Pozniak Y, Burg Golani T, Lobel L, Brenner M, Sigal N, Herskovits AA (2014) Listeria monocytogenes MDR transporters are involved in LTA synthesis and triggering of innate immunity during infection. Front Cell Infect Microbiol 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A (2018) Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 14:e1007342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rallu F, Gruss A, Ehrlich SD, Maguin E (2000) Acid-and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528

    Article  CAS  PubMed  Google Scholar 

  69. Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Int Med 272:541–561

    Article  CAS  Google Scholar 

  71. Zhang L, Li W, He ZG (2013) DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 288:3085–3096

    Article  CAS  PubMed  Google Scholar 

  72. Zhang J, Du GC, Zhang Y, Liao XY, Wang M, Li Y, Chen J (2010) Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 76:2989–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762

    Article  CAS  PubMed  Google Scholar 

  74. Shin JH, Kim J, Kim SM, Kim S, Lee JC, Ahn JM, Cho JY (2010) σB-dependent protein induction in Listeria monocytogenes during vancomycin stress. FEMS Microbiol Lett 308:94–100

    Article  CAS  PubMed  Google Scholar 

  75. Joseph B, Mertins s, Stoll R, Schar J, Umesha KR, Luo Q, Muller-Altrock S, Goebel W, (2008) Glycerol metabolism and PrfA activity in Listeria monocytogenes. J Bacteriol 190:5412–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jensen MØ, Mouritsen OG (2004) Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim Biophys Acta-Biomembranes 1666:205–226

    Article  CAS  Google Scholar 

  77. Naclerio GA, Onyedibe KI, Sintim HO (2020) Lipoteichoic acid biosynthesis inhibitors as potent inhibitors of S. aureus and E. faecalis growth and biofilm formation. Molecules 25:2277

    Article  CAS  PubMed Central  Google Scholar 

  78. Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Götz F, Zähringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100

    Article  CAS  PubMed  Google Scholar 

  80. Melian C, Castellano P, Segli F, Mendoza LM, Vignolo GM (2021) Proteomic analysis of Listeria monocytogenes FBUNT during biofilm formation at 10°C in response to lactocin AL705. Front Microbiol 12:43

    Article  Google Scholar 

  81. Toledo-Arana A, Lasa I (2020) Advances in bacterial transcriptome understanding: from overlap** transcription to the excludon concept. Mol Microbiol 113:593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chang Y, Gu W, Fischer N, McLandsborough L (2012) Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Appl Microbiol Biotechnol 93:2051–2062

    Article  CAS  PubMed  Google Scholar 

  83. Mastronicolis SK, German JB, Smith GM (1996) Diversity of the polar lipids of the food-borne pathogen Listeria monocytogenes. Lipids 31:635–640

    Article  CAS  PubMed  Google Scholar 

  84. Mastronicolis SK, German JB, Smith GM (1996) Isolation and fatty acid analysis of neutral and polar lipids of the food bacterium Listeria monocytogenes. Food Chem 57:451–456

    Article  CAS  Google Scholar 

  85. Whittaker P, Fry FS, Curtis SK, Al-Khaldi SF, Mossoba MM, Yurawecz MP, Dunkel VC (2005) Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J Agric Food Chem 53:3735–3742

    Article  CAS  PubMed  Google Scholar 

  86. Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S (2019) Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst 94:71–90

    Article  CAS  PubMed  Google Scholar 

  87. Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354:4268

    Article  CAS  Google Scholar 

  88. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65:317–322

    Article  CAS  Google Scholar 

  89. Krawczyk-Balska A, Markiewicz Z (2016) The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 120:251–265

    Article  CAS  PubMed  Google Scholar 

  90. Sun Y, Wilkinson BJ, Standiford TJ, Akinbi HT, O’Riordan MX (2012) Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J Bacteriol 194:5274–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bharatiya B, Wang G, Rogers SE, Pedersen JS, Mann S, Briscoe WH (2021) Mixed liposomes containing gram-positive bacteria lipids: lipoteichoic acid (LTA) induced structural changes. Colloids Surf B 199:111551

    Article  CAS  Google Scholar 

  92. Hesser AR, Schaefer K, Lee W, Walker S (2020) Lipoteichoic acid polymer length is determined by competition between free starter units. Proc Natl Acad Sci USA 117:29669–29676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Adriana Franco Paes Leme, M.Sc. Romenia Ramos Domingues and Dr. Bianca Alves Pauletti, from Mass Spectrometry Laboratory of LNBio/CNPEM (Campinas, Brazil) for hel** us to perform the LC-MS/MS procedures.

Funding

This work received financial support from CNPq (Brasilia, Brazil) [grant 308880/2021–8]. PS was a former recipient of a PhD fellowship from CAPES. PS and DP were supported through the Deutsche Forschungsgemeinschaft through the CMFI Cluster of Excellence (EXC 2124).

Author information

Authors and Affiliations

Authors

Contributions

PS, AB, LM, and MdA contributed to the study conception and design. Material preparation, data collection, data analysis, and statistical analysis were performed by PS, FFV, GM, DD, DP and GVC. The manuscript was written by PS and critically revised by AB. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Adriano Brandelli.

Ethics declarations

Competing interests

Authors declare no conflicts of interest.

Ethical approval

This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stincone, P., Fonseca Veras, F., Micalizzi, G. et al. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response. Cell. Mol. Life Sci. 79, 263 (2022). https://doi.org/10.1007/s00018-022-04292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04292-4

Keywords

Navigation