Log in

Recombinant thrombomodulin domain 1 rescues pathological angiogenesis by inhibition of HIF-1α-VEGF pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pathological angiogenesis (PA) contributes to various ocular diseases, including age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, which are major causes of blindness over the world. Current treatments focus on anti-vascular endothelial growth factor (VEGF) therapy, but persistent avascular retina, recurrent intravitreal neovascularization, and general adverse effects are reported. We have previously found that recombinant thrombomodulin domain 1 (rTMD1) can suppress vascular inflammation. However, the function of rTMD1 in VEGF-induced PA remains unknown. In this study, we found that rTMD1 inhibited VEGF-induced angiogenesis in vitro. In an oxygen induced retinopathy (OIR) animal model, rTMD1 treatment significantly decreased retinal neovascularization but spared normal physiological vessel growth. Furthermore, loss of TMD1 significantly promoted PA in OIR. Meanwhile, hypoxia-inducible factor-1α, the transcription factor that upregulates VEGF, was suppressed after rTMD1 treatment. The levels of interleukin-6, and intercellular adhesion molecule-1 were also significantly suppressed. In conclusion, our results indicate that rTMD1 not only has dual effects to suppress PA and inflammation in OIR, but also can be a potential HIF-1α inhibitor for clinical use. These data bring forth the possibility of rTMD1 as a novel therapeutic agent for PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data are available in the main text.

Code availability

Not applicable.

References

  1. Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP, Saba N, Fredrick T, Burnim S, Kim JS, Patel G, Juan AM, Hurst CG, Hatton CJ, Cui Z, Pierce KA, Bherer P, Aguilar E, Powner MB, Vevis K, Boisvert M, Fu Z, Levy E, Fruttiger M, Packard A, Rezende FA, Maranda B, Sapieha P, Chen J, Friedlander M, Clish CB, Smith LE (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22:439–445. https://doi.org/10.1038/nm.4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002

    Article  CAS  PubMed  Google Scholar 

  3. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S, Group AS (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444. https://doi.org/10.1056/NEJMoa062655

    Article  CAS  PubMed  Google Scholar 

  4. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431. https://doi.org/10.1056/NEJMoa054481

    Article  CAS  PubMed  Google Scholar 

  5. Mintz-Hittner HA, Kennedy KA, Chuang AZ, Group B-RC (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364:603–615. https://doi.org/10.1056/NEJMoa1007374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diabetic Retinopathy Clinical Research N, Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372:1193–1203. https://doi.org/10.1056/NEJMoa1414264

    Article  CAS  Google Scholar 

  7. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442. https://doi.org/10.1038/380439a0

    Article  CAS  PubMed  Google Scholar 

  8. Comparison of Age-related Macular Degeneration Treatments Trials Research G, Maguire MG, Martin DF, Ying GS, Jaffe GJ, Daniel E, Grunwald JE, Toth CA, Ferris FL 3rd, Fine SL (2016) Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology 123:1751–1761. https://doi.org/10.1016/j.ophtha.2016.03.045

    Article  Google Scholar 

  9. Lains I, Figueira J, Santos AR, Baltar A, Costa M, Nunes S, Farinha C, Pinto R, Henriques J, Silva R (2014) Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy. Retina 34:1199–1207. https://doi.org/10.1097/IAE.0000000000000053

    Article  CAS  PubMed  Google Scholar 

  10. Cheung N, Wong IY, Wong TY (2014) Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 37:900–905. https://doi.org/10.2337/dc13-1990

    Article  CAS  PubMed  Google Scholar 

  11. Beharry KD, Valencia GB, Lazzaro DR, Aranda JV (2016) Pharmacologic interventions for the prevention and treatment of retinopathy of prematurity. Semin Perinatol 40:189–202. https://doi.org/10.1053/j.semperi.2015.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M, Purcaro V, Giannantonio C, Papacci P, Romagnoli C (2014) Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology 121:2212–2219. https://doi.org/10.1016/j.ophtha.2014.05.015

    Article  PubMed  Google Scholar 

  13. Sato T, Wada K, Arahori H, Kuno N, Imoto K, Iwahashi-Shima C, Kusaka S (2012) Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol 153(327–333):e1. https://doi.org/10.1016/j.ajo.2011.07.005

    Article  CAS  Google Scholar 

  14. Stahl A, Krohne TU, Eter N, Oberacher-Velten I, Guthoff R, Meltendorf S, Ehrt O, Aisenbrey S, Roider J, Gerding H, Jandeck C, Smith LEH, Walz JM, Comparing Alternative Ranibizumab Dosages for S and Efficacy in Retinopathy of Prematurity Study G (2018) Comparing alternative ranibizumab dosages for safety and efficacy in retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr 172:278–286. https://doi.org/10.1001/jamapediatrics.2017.4838

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grunwald JE, Pistilli M, Daniel E, Ying GS, Pan W, Jaffe GJ, Toth CA, Hagstrom SA, Maguire MG, Martin DF, Comparison of Age-Related Macular Degeneration Treatments Trials Research G (2017) Incidence and growth of geographic atrophy during 5 years of comparison of age-related macular degeneration treatments trials. Ophthalmology 124:97–104. https://doi.org/10.1016/j.ophtha.2016.09.012

    Article  PubMed  Google Scholar 

  16. Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, van Meurs JC, Tanck MW, Oliver N, Klaassen I, Van Noorden CJ, Goldschmeding R, Schlingemann RO (2008) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS ONE 3:e2675. https://doi.org/10.1371/journal.pone.0002675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arevalo JF, Maia M, Flynn HW Jr, Saravia M, Avery RL, Wu L, Farah ME, Pieramici DJ, Berrocal MH, Sanchez JG (2008) Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol 92:213–216. https://doi.org/10.1136/bjo.2007.127142

    Article  CAS  PubMed  Google Scholar 

  18. Yenihayat F, Ozkan B, Kasap M, Karabas VL, Guzel N, Akpinar G, Pirhan D (2019) Vitreous IL-8 and VEGF levels in diabetic macular edema with or without subretinal fluid. Int Ophthalmol 39:821–828. https://doi.org/10.1007/s10792-018-0874-6

    Article  PubMed  Google Scholar 

  19. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S (2009) Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 116:73–79. https://doi.org/10.1016/j.ophtha.2008.09.037

    Article  PubMed  Google Scholar 

  20. Maturi RK, Glassman AR, Liu D, Beck RW, Bhavsar AR, Bressler NM, Jampol LM, Melia M, Punjabi OS, Salehi-Had H, Sun JK, Diabetic Retinopathy Clinical Research N (2018) Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol 136:29–38. https://doi.org/10.1001/jamaophthalmol.2017.4914

    Article  PubMed  Google Scholar 

  21. Castro-Navarro V, Cervera-Taulet E, Navarro-Palop C, Monferrer-Adsuara C, Hernandez-Bel L, Montero-Hernandez J (2019) Intravitreal dexamethasone implant Ozurdex(R) in naive and refractory patients with different subtypes of diabetic macular edema. BMC Ophthalmol 19:15. https://doi.org/10.1186/s12886-018-1022-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adeniran JMF, Jusufbegovic D, Schaal S (2017) Common and rare ocular side-effects of the dexamethasone implant. Ocul Immunol Inflamm 25:834–840. https://doi.org/10.1080/09273948.2016.1184284

    Article  CAS  Google Scholar 

  23. Esmon CT, Owen WG (1981) Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci USA 78:2249–2252

    Article  CAS  Google Scholar 

  24. Li YH, Kuo CH, Shi GY, Wu HL (2012) The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 19:34. https://doi.org/10.1186/1423-0127-19-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esmon C (2005) Do-all receptor takes on coagulation, inflammation. Nat Med 11:475–477. https://doi.org/10.1038/nm0505-475

    Article  CAS  PubMed  Google Scholar 

  26. Conway EM (2012) Thrombomodulin and its role in inflammation. Semin Immunopathol 34:107–125. https://doi.org/10.1007/s00281-011-0282-8

    Article  CAS  PubMed  Google Scholar 

  27. Shi CS, Shi GY, Hsiao HM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH, Wu HL (2008) Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112:3661–3670. https://doi.org/10.1182/blood-2008-03-142760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuo CH, Chen PK, Chang BI, Sung MC, Shi CS, Lee JS, Chang CF, Shi GY, Wu HL (2012) The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood 119:1302–1313. https://doi.org/10.1182/blood-2011-08-376038

    Article  CAS  PubMed  Google Scholar 

  29. Boulton M, Gregor Z, McLeod D, Charteris D, Jarvis-Evans J, Moriarty P, Khaliq A, Foreman D, Allamby D, Bardsley B (1997) Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 81:228–233. https://doi.org/10.1136/bjo.81.3.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577. https://doi.org/10.1084/jem.20020077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim CC, Peng IC, Huang YH (2020) Safety of intrastromal injection of polyhexamethylene biguanide and propamidine isethionate in a rabbit model. J Adv Res 22:1–6. https://doi.org/10.1016/j.jare.2019.11.012

    Article  CAS  PubMed  Google Scholar 

  32. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  PubMed  Google Scholar 

  33. Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573. https://doi.org/10.1038/nprot.2009.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775. https://doi.org/10.1074/jbc.M901790200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402. https://doi.org/10.1016/j.molcel.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  36. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237. https://doi.org/10.1074/jbc.270.3.1230

    Article  CAS  PubMed  Google Scholar 

  37. Miwa Y, Hoshino Y, Shoda C, Jiang X, Tsubota K, Kurihara T (2019) Pharmacological HIF inhibition prevents retinal neovascularization with improved visual function in a murine oxygen-induced retinopathy model. Neurochem Int 128:21–31. https://doi.org/10.1016/j.neuint.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL, Campochiaro PA (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189

    CAS  PubMed  Google Scholar 

  39. Tokunaga CC, Mitton KP, Dailey W, Massoll C, Roumayah K, Guzman E, Tarabishy N, Cheng M, Drenser KA (2014) Effects of anti-VEGF treatment on the recovery of the develo** retina following oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 55:1884–1892. https://doi.org/10.1167/iovs.13-13397

    Article  CAS  PubMed  Google Scholar 

  40. Chao TH, Tsai WC, Chen JY, Liu PY, Chung HC, Tseng SY, Kuo CH, Shi GY, Wu HL, Li YH (2014) Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection. Int J Cardiol 172:340–349. https://doi.org/10.1016/j.ijcard.2014.01.009

    Article  PubMed  Google Scholar 

  41. Salomaa V, Wu KK (1999) Soluble thrombomodulin as predictor of incident coronary heart disease. Lancet 354:1646–1647. https://doi.org/10.1016/S0140-6736(05)77134-8

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  43. Park SW, Kim JH, Kim KE, Jeong MH, Park H, Park B, Suh YG, Park WJ, Kim JH (2014) Beta-lapachone inhibits pathological retinal neovascularization in oxygen-induced retinopathy via regulation of HIF-1alpha. J Cell Mol Med 18:875–884. https://doi.org/10.1111/jcmm.12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, Kawauchi S, Ema M, Shibahara S, Udono T, Tomita K, Tamai M, Sogawa K, Yamamoto M, Fujii-Kuriyama Y (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22:1134–1146. https://doi.org/10.1093/emboj/cdg117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109:805–815. https://doi.org/10.1172/JCI13776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M (2012) Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest 122:4213–4217. https://doi.org/10.1172/JCI65157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang LY, Lai CH, Kuo CH, Chang BI, Wu HL, Cheng TL (2021) Recombinant thrombomodulin lectin-like domain attenuates porphyromonas gingivalis lipopolysaccharide-induced osteoclastogenesis and periodontal bone resorption. J Periodontol. https://doi.org/10.1002/JPER.20-0732

    Article  PubMed  Google Scholar 

  48. Kawasoe J, Uchida Y, Miyauchi T, Kadono K, Hirao H, Saga K, Watanabe T, Ueda S, Terajima H, Uemoto S (2021) The lectin-like domain of thrombomodulin is a drug candidate for both prophylaxis and treatment of liver ischemia and reperfusion injury in mice. Am J Transplant 21:540–551. https://doi.org/10.1111/ajt.16269

    Article  CAS  PubMed  Google Scholar 

  49. Zhang F, Duan S, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y (2016) Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer. Cancer Sci 107:746–754. https://doi.org/10.1111/cas.12937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, Cheng JQ, Jove R, Yu H (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24:5552–5560. https://doi.org/10.1038/sj.onc.1208719

    Article  CAS  PubMed  Google Scholar 

  51. Xu Y, Lu X, Hu Y, Yang B, Tsui CK, Yu S, Lu L, Liang X (2018) Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res 64:e12473. https://doi.org/10.1111/jpi.12473

    Article  CAS  PubMed  Google Scholar 

  52. Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J (2015) Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 67:145–159. https://doi.org/10.1002/iub.1358

    Article  CAS  PubMed  Google Scholar 

  53. Chan SH, Chen JH, Li YH, Lin LJ, Tsai LM (2006) Increasing post-event plasma thrombomodulin level associates with worse outcome in survival of acute coronary syndrome. Int J Cardiol 111:280–285. https://doi.org/10.1016/j.ijcard.2005.09.015

    Article  PubMed  Google Scholar 

  54. Ileri M, Hisar I, Yetkin E, Kosar F, Cehreli S, Korkmaz S, Demirkan D (2001) Increased levels of plasma thrombomodulin in patients with acute myocardial infarction who had thrombolytic therapy and achieved successful reperfusion. Clin Cardiol 24:377–379. https://doi.org/10.1002/clc.4960240506

    Article  CAS  PubMed  Google Scholar 

  55. Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T (1995) Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today 25:585–590. https://doi.org/10.1007/bf00311430

    Article  CAS  PubMed  Google Scholar 

  56. Thorand B, Baumert J, Herder C, Meisinger C, Koenig W (2007) Soluble thrombomodulin as a predictor of type 2 diabetes: results from the MONICA/KORA Augsburg case-cohort study, 1984–1998. Diabetologia 50:545–548. https://doi.org/10.1007/s00125-006-0568-x

    Article  CAS  PubMed  Google Scholar 

  57. Lai CH, Shi GY, Lee FT, Kuo CH, Cheng TL, Chang BI, Ma CY, Hsu FC, Yang YJ, Wu HL (2013) Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg 258:1103–1110. https://doi.org/10.1097/SLA.0b013e31827df7cb

    Article  PubMed  Google Scholar 

  58. Huang YH, Ching-Chang I, Kuo CH, Hsu YY, Lee FT, Shi GY, Tseng SH, Wu HL (2015) Thrombomodulin promotes corneal epithelial wound healing. PLoS ONE 10:e0122491. https://doi.org/10.1371/journal.pone.0122491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N, Maruyama I (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115:1267–1274. https://doi.org/10.1172/JCI22782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR, Conway EM (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4:1813–1824. https://doi.org/10.1111/j.1538-7836.2006.02033.x

    Article  PubMed  Google Scholar 

  61. Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Nissen MH, Sorensen TL (2019) Systemic levels of interleukin-6 correlate with progression rate of geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci 60:202–208. https://doi.org/10.1167/iovs.18-25878

    Article  CAS  PubMed  Google Scholar 

  62. Hillier RJ, Ojaimi E, Wong DT, Mak MY, Berger AR, Kohly RP, Kertes PJ, Forooghian F, Boyd SR, Eng K, Altomare F, Giavedoni LR, Nisenbaum R, Muni RH (2017) Aqueous humor cytokine levels as biomarkers of disease severity in diabetic macular edema. Retina 37:761–769. https://doi.org/10.1097/IAE.0000000000001210

    Article  CAS  PubMed  Google Scholar 

  63. Miao H, Tao Y, Li XX (2012) Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis 18:574–580

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90:e381–e388. https://doi.org/10.1111/j.1755-3768.2012.02414.x

    Article  PubMed  Google Scholar 

  65. Chu SJ, Zhang ZH, Wang M, Xu HF (2017) Effect of bevacizumab on the expression of fibrosis-related inflammatory mediators in ARPE-19 cells. Int J Ophthalmol 10:366–371. https://doi.org/10.18240/ijo.2017.03.07

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yonekawa Y, Wu WC, Nitulescu CE, Chan RVP, Thanos A, Thomas BJ, Todorich B, Drenser KA, Trese MT, Capone A Jr (2018) Progressive retinal detachment in infants with retinopathy of prematurity treated with intravitreal bevacizumab or ranibizumab. Retina 38:1079–1083. https://doi.org/10.1097/IAE.0000000000001685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Grants Ministry of Science and Technology 109-2628-B-006-032 to YHH and 110-2320-B-006-051 to HLW, Taiwan.

Funding

Supported by Grants Ministry of Science and Technology 109-2628-B-006-032 to YHH and 110-2320-B-006-051 to HLW, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

YHH, ICP and HLW involved in design and conduct of study. Collection and management of the data were done by YHH, CHK and ICP. YHH, CHK, ICP, YSC, SHT, EMC and HLW participated in management and interpretation of the data. YHH, CHK, EMC and HLW participated in preparation, review, and approval of the manuscript.

Corresponding authors

Correspondence to Yi-Hsun Huang or Hua-Lin Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All efforts were made to reduce both animal suffering and the number of animals used. All animal studies and procedures adhered to the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the Institutional Animal Care and Use Committee at National Cheng Kung University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YH., Kuo, CH., Peng, IC. et al. Recombinant thrombomodulin domain 1 rescues pathological angiogenesis by inhibition of HIF-1α-VEGF pathway. Cell. Mol. Life Sci. 78, 7681–7692 (2021). https://doi.org/10.1007/s00018-021-03950-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03950-3

Keywords

Navigation