Log in

Ligand-dependent localization and function of ORP–VAP complexes at membrane contact sites

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP–VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP–VAP association, alters the subcellular targeting of ORP–VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP–VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER–lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP–VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BiFC:

Bimolecular fluorescence complementation

EM:

Electron microscopy

ER:

Endoplasmic reticulum

FFAT:

Two phenylalanines in an acidic tract

GST:

Glutathione-S-transferase

LD:

Lipid droplet

MCS:

Membrane contact site

OHC:

Hydroxycholesterol

ORD:

OSBP-related ligand-binding domain

ORP:

OSBP-related protein

OSBP:

Oxysterol-binding protein

Osh:

OSBP homolog (in yeast)

PI4P:

Phosphatidylinositol-4-phosphate

PIP:

Phosphoinositide

PM:

Plasma membrane

TG:

Triglyceride

VAMP:

Vesicle-associated membrane protein

VAP:

VAMP-associated protein

References

  1. Dawson PA, Ridgway ND, Slaughter CA, Brown MS, Goldstein JL (1989) cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem 264:16798–16803

    CAS  PubMed  Google Scholar 

  2. Taylor FR, Saucier SE, Shown EP, Parish EJ, Kandutsch AA (1984) Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem 259:12382–12387

    CAS  PubMed  Google Scholar 

  3. Wang PY, Weng J, Anderson RG (2005) OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307:1472–1476

    Article  CAS  PubMed  Google Scholar 

  4. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843

    Article  CAS  PubMed  Google Scholar 

  5. Anniss AM, Apostolopoulos J, Dworkin S, Purton LE, Sparrow RL (2002) An oxysterol-binding protein family identified in the mouse. DNA Cell Biol 21:571–580

    Article  CAS  PubMed  Google Scholar 

  6. Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR (2001) A family of 12 human genes containing oxysterol-binding domains. Genomics 78:185–196

    Article  CAS  PubMed  Google Scholar 

  7. Lehto M, Laitinen S, Chinetti G, Johansson M, Ehnholm C, Staels B, Ikonen E, Olkkonen VM (2001) The OSBP-related protein family in humans. J Lipid Res 42:1203–1213

    CAS  PubMed  Google Scholar 

  8. Beh CT, Cool L, Phillips J, Rine J (2001) Overlap** functions of the yeast oxysterol-binding protein homologues. Genetics 157:1117–1140

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Olkkonen VM, Li S (2013) Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 52:529–538

    Article  CAS  PubMed  Google Scholar 

  10. Raychaudhuri S, Prinz WA (2010) The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol 26:157–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ridgway ND (2010) Oxysterol-binding proteins. Subcell Biochem 51:159–182

    Article  CAS  PubMed  Google Scholar 

  12. Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT (2005) Structural basis of FFAT motif-mediated ER targeting. Structure 13:1035–1045

    Article  CAS  PubMed  Google Scholar 

  13. Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H (2011) A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol 192:121–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yan D, Mäyränpää MI, Wong J, Perttilä J, Lehto M, Jauhiainen M, Kovanen PT, Ehnholm C, Brown AJ, Olkkonen VM (2008) OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J Biol Chem 283:332–340

    Article  CAS  PubMed  Google Scholar 

  16. Kagiwada S, Hosaka K, Murata M, Nikawa J, Takatsuki A (1998) The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J Bacteriol 180:1700–1708

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Nishimura Y, Hayashi M, Inada H, Tanaka T (1999) Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Biochem Biophys Res Commun 254:21–26

    Article  CAS  PubMed  Google Scholar 

  18. Skehel PA, Armitage BA, Bartsch D, Hu Y, Kaang BK, Siegelbaum SA, Kandel ER, Martin KC (1995) Proteins functioning in synaptic transmission at the sensory to motor synapse of Aplysia. Neuropharmacology 34:1379–1385

    Article  CAS  PubMed  Google Scholar 

  19. Skehel PA, Fabian-Fine R, Kandel ER (2000) Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proc Natl Acad Sci USA 97:1101–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lev S, Ben Halevy D, Peretti D, Dahan N (2008) The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 18:282–290

    Article  CAS  PubMed  Google Scholar 

  21. Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H (2014) The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 23:1975–1989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nishimura AL, Al-Chalabi A, Zatz M (2005) A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population. Hum Genet 118:499–500

    Article  PubMed  Google Scholar 

  23. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, Skehel P, Zatz M (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kvam E, Goldfarb DS (2004) Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J Cell Sci 117:4959–4968

    Article  CAS  PubMed  Google Scholar 

  25. Levine TP, Munro S (2001) Dual targeting of Osh1p, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus–vacuole junction. Mol Biol Cell 12:1633–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 185:1209–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schulz TA, Choi MG, Raychaudhuri S, Mears JA, Ghirlando R, Hinshaw JE, Prinz WA (2009) Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol 187:889–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stefan CJ, Manford AG, Emr SD (2013) ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 25:434–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tavassoli S, Chao JT, Young BP, Cox RC, Prinz WA, de Kroon AI, Loewen CJ (2013) Plasma membrane–endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep 14:434–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vihervaara T, Uronen RL, Wohlfahrt G, Björkhem I, Ikonen E, Olkkonen VM (2011) Sterol binding by OSBP-related protein 1L regulates late endosome motility and function. Cell Mol Life Sci 68:537–551

    Article  CAS  PubMed  Google Scholar 

  31. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:389–401

    Article  CAS  PubMed  Google Scholar 

  32. Elbaz Y, Schuldiner M (2011) Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci 36:616–623

    Article  CAS  PubMed  Google Scholar 

  33. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 1833:2526–2541

    Article  CAS  PubMed  Google Scholar 

  34. Klecker T, Bockler S, Westermann B (2014) Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol (Epub ahead of print)

  35. Levine T, Loewen C (2006) Inter-organelle membrane contact sites: through a glass, darkly. Curr Opin Cell Biol 18:371–378

    Article  CAS  PubMed  Google Scholar 

  36. Toulmay A, Prinz WA (2011) Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Curr Opin Cell Biol 23:458–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36:1211–1226

    CAS  PubMed  Google Scholar 

  38. Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    Article  CAS  PubMed  Google Scholar 

  39. Xu N, Zhang SO, Cole RA, McKinney SA, Guo F, Haas JT, Bobba S, Farese RV Jr, Mak HY (2012) The FATP1–DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198:895–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS (2009) Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 122:1834–1841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV Jr, Walther TC (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  Google Scholar 

  44. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P (2013) PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23:1129–1140

    Article  CAS  PubMed  Google Scholar 

  47. Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:8682–8687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  49. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Li S, Mäyränpää MI, Zhong W, Back N, Yan D, Olkkonen VM (2010) OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface. Exp Cell Res 316:3304–3316

    Article  CAS  PubMed  Google Scholar 

  52. Skarp KP, Zhao X, Weber M, Jäntti J (2008) Use of bimolecular fluorescence complementation in yeast Saccharomyces cerevisiae. Methods Mol Biol 457:165–175

    Article  CAS  PubMed  Google Scholar 

  53. de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W, Antonny B, Drin G (2011) Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol 195:965–978

    Article  PubMed Central  PubMed  Google Scholar 

  54. Laitinen S, Lehto M, Lehtonen S, Hyvärinen K, Heino S, Lehtonen E, Ehnholm C, Ikonen E, Olkkonen VM (2002) ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. J Lipid Res 43:245–255

    CAS  PubMed  Google Scholar 

  55. Lehto M, Hynynen R, Karjalainen K, Kuismanen E, Hyvärinen K, Olkkonen VM (2005) Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants. Exp Cell Res 310:445–462

    Article  CAS  PubMed  Google Scholar 

  56. Seemann J, Jokitalo EJ, Warren G (2000) The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 11:635–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hynynen R, Suchanek M, Spandl J, Back N, Thiele C, Olkkonen VM (2009) OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J Lipid Res 50:1305–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  59. Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  60. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  CAS  PubMed  Google Scholar 

  61. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ngo M, Ridgway ND (2009) Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 20:1388–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Suchanek M, Hynynen R, Wohlfahrt G, Lehto M, Johansson M, Saarinen H, Radzikowska A, Thiele C, Olkkonen VM (2007) The mammalian OSBP-related proteins (ORP) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem J 405:473–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wyles JP, Perry RJ, Ridgway ND (2007) Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Exp Cell Res 313:1426–1437

    Article  CAS  PubMed  Google Scholar 

  65. Perry RJ, Ridgway ND (2006) Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol Biol Cell 17:2604–2616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Nhek S, Ngo M, Yang X, Ng MM, Field SJ, Asara JM, Ridgway ND, Toker A (2010) Regulation of oxysterol-binding protein Golgi localization through protein kinase D-mediated phosphorylation. Mol Biol Cell 21:2327–2337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ridgway ND, Lagace TA, Cook HW, Byers DM (1998) Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. J Biol Chem 273:31621–31628

    Article  CAS  PubMed  Google Scholar 

  68. Tong J, Yang H, Yang H, Eom SH, Im YJ (2013) Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure 21:1203–1213

    Article  CAS  PubMed  Google Scholar 

  69. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–261

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Y, Wohlfahrt G, Paavola J, Olkkonen VM (2014) A vertebrate model for the study of lipid binding/transfer protein function: conservation of OSBP-related proteins between zebrafish and human. Biochem Biophys Res Commun 446:675–680

    Article  CAS  PubMed  Google Scholar 

  71. Liu X, Ridgway ND (2014) Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9). PLoS ONE 9:e108368

    Article  PubMed Central  PubMed  Google Scholar 

  72. Nissilä E, Ohsaki Y, Weber-Boyvat M, Perttilä J, Ikonen E, Olkkonen VM (2012) ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion. Biochim Biophys Acta 1821:1472–1484

    Article  PubMed  Google Scholar 

  73. Perttilä J, Merikanto K, Naukkarinen J, Surakka I, Martin NW, Tanhuanpää K, Grimard V, Taskinen MR, Thiele C, Salomaa V, Jula A, Perola M, Virtanen I, Peltonen L, Olkkonen VM (2009) OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J Mol Med 87:825–835

    Article  PubMed Central  PubMed  Google Scholar 

  74. Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ (2002) Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 35:291–306

    Article  CAS  PubMed  Google Scholar 

  75. Johansson M, Bocher V, Lehto M, Chinetti G, Kuismanen E, Ehnholm C, Staels B, Olkkonen VM (2003) The two variants of oxysterol binding protein-related protein-1 display different tissue expression patterns, have different intracellular localization, and are functionally distinct. Mol Biol Cell 14:903–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Lagace TA, Byers DM, Cook HW, Ridgway ND (1997) Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain. Biochem J 326:205–213

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Wyles JP, Ridgway ND (2004) VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. Exp Cell Res 297:533–547

    Article  CAS  PubMed  Google Scholar 

  78. Olkkonen VM, Levine TP (2004) Oxysterol binding proteins: in more than one place at one time? Biochem Cell Biol 82:87–98

    Article  CAS  PubMed  Google Scholar 

  79. Lagace TA, Byers DM, Cook HW, Ridgway ND (1999) Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J Lipid Res 40:109–116

    CAS  PubMed  Google Scholar 

  80. Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S (2008) Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 19:3871–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7:639–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Charman M, Colbourne TR, Pietrangelo A, Kreplak L, Ridgway ND (2014) Oxysterol-binding protein (OSBP)-related protein 4 (ORP4) is essential for cell proliferation and survival. J Biol Chem 289:15705–15717

    Article  CAS  PubMed  Google Scholar 

  83. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  PubMed  Google Scholar 

  84. Alfaro G, Johansen J, Dighe SA, Duamel G, Kozminski KG, Beh CT (2011) The sterol-binding protein Kes1/Osh4p is a regulator of polarized exocytosis. Traffic 12:1521–1536

    Article  CAS  PubMed  Google Scholar 

  85. Loewen CJ, Levine TP (2005) A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem 280:14097–14104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Liisa Arala, Eeva Jääskeläinen and Riikka Kosonen are thanked for skillful technical assistance, Prof. M. A. De Matteis (Telethon Institute of Genetics and Medicine, Naples, Italy) for the rabbit VAPA and -B antibodies, and Dr. I. Kaverina (Vanderbilt Univ., Nashville, TN, USA) for the mCherry-GalT1(1–81) construct. We thank Eija Jokitalo and the Electron Microscopy Unit (Institute of Biotechnology, Helsinki, Finland) for assistance with the transmission electron microscopy. The study was supported by the Academy of Finland (Grant 257409 to M.W.-B.), the Finnish Concordia Fund (H. K.), the Sigrid Juselius Foundation, the Novo Nordisk Foundation, the Liv ovh Hälsa Foundation, the Finnish Foundation for Cardiovascular Research, and the Magnus Ehrnrooth Foundation (V. M. O.). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesa M. Olkkonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2014_1786_MOESM1_ESM.tif

Supplementary Fig. S1 FFAT motif containing ORPs interact with VAPB at specific sites in the cell. Fluorescence imaging of HuH7 cells expressing different VnORP constructs in combination with VcVAPB and mCherry-VAPB. The BiFC signals indicating physical interaction/proximity of the ORPs and VAPB are shown in the top row, and merge of the BiFC and mCherry-VAPB fluorescence in the bottom row. (TIFF 10164 kb)

18_2014_1786_MOESM2_ESM.tif

Supplementary Fig. S2 Impact of inositol-phosphate-binding cleft mutations (mPIP) on the ORP–VAPA interaction. (A) HuH7 cells expressing the indicated wt or mPIP VnORP2 and VnORP4L constructs were lysed and subjected to GST-VAPA pull-down. Cell lysates and pull-downs were analyzed by Western blotting with anti-GFP antibodies. The GST-VAPA band was visualized as an unspecific band cross-reacting with the secondary antibody. (B) Quantification of three repeats of the experiment in (A). Shown are averages and standard deviations; *p < 0.05. (C and D) Fluorescence imaging of HuH7 cells expressing wt or mutant VnORP constructs [ORP4L (C), ORP2 (D)] in combination with VcVAPA and mCherry-VAPA. BiFC signal intensities were analyzed in a minimum of 100 cells per condition and normalized to the cotransfection marker mCherry-VAPA. Shown are BiFC signal intensity averages and standard deviations. (TIFF 43630 kb)

18_2014_1786_MOESM3_ESM.tif

Supplementary Fig. S3 Electron microscopic analysis of cells expressing the VnORP9L and VcVAPA. (A) Transmission electron microscopy images of HuH7 cells expressing either the empty vectors (control) or VnORP9 in combination with VcVAPA. (B) Quantification of the thickness of ER sheets/tubules in control and ORP9L-VAPA-expressing cells. Shown are averages and SEM of 20 ER samples analyzed per condition; ***p < 0.005. (TIFF 43631 kb)

18_2014_1786_MOESM4_ESM.tif

Supplementary Fig. S4 Impact of the ORP2 inositol-phosphate-binding cleft mutant (mPIP) on the distribution and total area of lipid droplets (LD). HuH7 cells expressing the indicated wt or mPIP VnORP2 and VcVAPA (BiFC), with the LD (Bodipy-C12) and nuclei (DAPI) co-stained. (A) Fluorescence microscopy images displaying the three channels and their merge. (B) Quantification of total LD area in a minimum of 20 cells per condition. Shown are averages and standard deviations. (C). The LD distribution in ORP2(wt)– and ORP2(mPIP)–VAPA-expressing cells. LD distribution was analyzed in a minimum of 10 cells per condition. The center of the nucleus was used to define the cell center. Shown are averages and SEM. (TIFF 43632 kb)

Supplementary Table S1 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber-Boyvat, M., Kentala, H., Peränen, J. et al. Ligand-dependent localization and function of ORP–VAP complexes at membrane contact sites. Cell. Mol. Life Sci. 72, 1967–1987 (2015). https://doi.org/10.1007/s00018-014-1786-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1786-x

Keywords

Navigation