Log in

Fibroblast growth factor receptor 4 deficiency in macrophages aggravates experimental colitis by promoting M1-polarization

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Compelling evidence indicates that dysregulated macrophages may play a key role in driving inflammation in inflammatory bowel disease (IBD). Fibroblast growth factor (FGF)-19, which is secreted by ileal enterocytes in response to bile acids, has been found to be significantly lower in IBD patients compared to healthy individuals, and is negatively correlated with the severity of diarrhea. This study aims to explore the potential impact of FGF19 signaling on macrophage polarization and its involvement in the pathogenesis of IBD.

Methods

The dextran sulfate sodium (DSS)-induced mouse colitis model was utilized to replicate the pathology of human IBD. Mice were created with a conditional knockout of FGFR4 (a specific receptor of FGF19) in myeloid cells, as well as mice that overexpressing FGF19 specifically in the liver. The severity of colitis was measured using the disease activity index (DAI) and histopathological staining. Various techniques such as Western Blotting, quantitative PCR, flow cytometry, and ELISA were employed to assess polarization and the expression of inflammatory genes.

Results

Myeloid-specific FGFR4 deficiency exacerbated colitis in the DSS mouse model. Deletion or inhibition of FGFR4 in bone marrow-derived macrophages (BMDMs) skewed macrophages towards M1 polarization. Analysis of transcriptome sequencing data revealed that FGFR4 deletion in macrophages significantly increased the activity of the complement pathway, leading to an enhanced inflammatory response triggered by LPS. Mechanistically, FGFR4-knockout in macrophages promoted complement activation and inflammatory response by upregulating the nuclear factor-κB (NF-κB)-pentraxin3 (PTX3) pathway. Additionally, FGF19 suppressed these pathways and reduced inflammatory response by activating FGFR4 in inflammatory macrophages. Liver-specific overexpression of FGF19 also mitigated inflammatory responses induced by DSS in vivo.

Conclusion

Our study highlights the significance of FGF19-FGFR4 signaling in macrophage polarization and the pathogenesis of IBD, offering a potential new therapeutic target for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

To obtain the RNA-seq data, check the website with the accession number PRJNA1034166 on https://www.ncbi.nlm.nih.gov/bioproject.

Abbreviations

ARG-1:

Arginase-1

BA:

Bile acid

BMDMs:

Bone marrow-derived macrophages

CD:

Crohn’s disease

CRC:

Colorectal cancer

CYP7A1:

Cytochrome P450 family 7 subfamily A member 1

C3ar1:

C3a receptor1

DAI:

Disease activity index

DSS:

Dextran sulfate sodium

FGF19:

Fibroblast growth factor 19

FGFR4:

Fibroblast growth factor receptor 4

HCC:

Hepatocellular carcinoma

IBD:

Inflammatory bowel disease

IBS-D:

Irritable bowel syndrome combined with diarrhea

IFN-γ:

Interferon gamma

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

NF-ΚB:

Nuclear factor-kappa B

PD-L1:

Programmed death ligand 1

p-IKKβ:

Phosphorylated kinase

PTX3:

Pentraxin3

p-IKBα:

Phosphorylated inhibitor kappa B alpha

TAMs:

Tumor-associated macrophages

TLR:

Toll-like receptor

TME:

Tumor microenvironment

TNF-α:

Tumor necrosis factor alpha

UC:

Ulcerative colitis

References

  1. Hodson R. Inflammatory bowel disease. Nature. 2016;540(7634):S97. https://doi.org/10.1038/540S97a.

    Article  CAS  PubMed  Google Scholar 

  2. Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49. https://doi.org/10.1038/nrgastro.2017.136.

    Article  PubMed  Google Scholar 

  3. Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–43. https://doi.org/10.1038/s41575-019-0172-4.

    Article  CAS  PubMed  Google Scholar 

  4. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate map** reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  5. De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400–e41513. https://doi.org/10.1016/j.cell.2018.07.048.

    Article  CAS  PubMed  Google Scholar 

  6. Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell. 2022;185(23):4259–79. https://doi.org/10.1016/j.cell.2022.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai CF, Chen GW, Chen YC, Shen CK, Lu DY, Yang LY, Chen JH, Yeh WL. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67. https://doi.org/10.3390/nu14010067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lissner D, Schumann M, Batra A, Kredel LI, Kühl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21(6):1297–305. https://doi.org/10.1097/MIB.0000000000000384.

    Article  PubMed  Google Scholar 

  11. Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. https://doi.org/10.3390/cells10010051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19. Nat Metab. 2019;1(6):588–94. https://doi.org/10.1038/s42255-019-0074-3.

    Article  PubMed  Google Scholar 

  13. Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE. 2011;6(3):e17868. https://doi.org/10.1371/journal.pone.0017868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell. 2011;19(3):347–58. https://doi.org/10.1016/j.ccr.2011.01.04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, Lu S, **a W. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene. 2020;39(17):3507–21. https://doi.org/10.1038/s41388-020-1227-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng S, Dakhova O, Creighton CJ, Ittmann M. Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res. 2013;73(8):2551–62. https://doi.org/10.1158/0008-5472.CAN-12-4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, et al. First-in-human phase I atudy of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019;9(12):1696–707. https://doi.org/10.1158/2159-8290.CD-19-0555.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou M, Zhu S, Xu C, Liu B, Shen J. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs. 2023;41(1):162–7. https://doi.org/10.1007/s10637-023-01335-w.

    Article  CAS  PubMed  Google Scholar 

  19. Lyutakov I, Nakov R, Valkov H, Vatcheva-Dobrevska R, Vladimirov B, Penchev P. Serum levels of fibroblast growth factor 19 correlate with the severity of diarrhea and independently from intestinal inflammation in patients with inflammatory bowel disease or microscopic colitis. Turk J Gastroenterol. 2021;32(4):374–81. https://doi.org/10.5152/tjg.2021.20247.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bourgonje AR, Hu S, Spekhorst LM, Zhernakova DV, Vich Vila A, Li Y, et al. The effect of phenotype and genotype on the plasma proteome in patients with inflammatory bowel disease. J Crohns Colitis. 2022;16(3):414–29. https://doi.org/10.1093/ecco-jcc/jjab157.

    Article  PubMed  Google Scholar 

  21. Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, et al. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics. 2021;11(10):5045–60. https://doi.org/10.7150/thno.56369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78(19):5586–99. https://doi.org/10.1158/0008-5472.CAN-17-3962.

    Article  CAS  PubMed  Google Scholar 

  23. Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2023;20(8):538–53. https://doi.org/10.1038/s41575-023-00769-0.

    Article  PubMed  Google Scholar 

  24. Lin X, Yosaatmadja Y, Kalyukina M, Middleditch MJ, Zhang Z, Lu X, Ding K, Patterson AV, Smaill JB, Squire CJ. Rotational freedom, steric hindrance, and protein dynamics explain BLU554 selectivity for the hinge cysteine of FGFR4. ACS Med Chem Lett. 2019;10(8):1180–6. https://doi.org/10.1021/acsmedchemlett.9b00196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. https://doi.org/10.1038/cr.2009.139.

    Article  CAS  PubMed  Google Scholar 

  26. Wende E, Laudeley R, Bleich A, Bleich E, Wetsel RA, Glage S, Klos A. The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice. PLoS ONE. 2013;8(4):e62257. https://doi.org/10.1371/journal.pone.0062257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain U, Woodruff TM, Stadnyk AW. The C5a receptor antagonist PMX205 ameliorates experimentally induced colitis associated with increased IL-4 and IL-10. Br J Pharmacol. 2013;168(2):488–501. https://doi.org/10.1111/j.1476-5381.2012.02183.x.

    Article  CAS  PubMed  Google Scholar 

  28. Ma YJ, Garred P. Pentraxins in complement activation and regulation. Front Immunol. 2018;9:3046. https://doi.org/10.3389/fimmu.2018.03046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baruah P, Dumitriu IE, Peri G, Russo V, Mantovani A, Manfredi AA, Rovere-Querini P. The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol. 2006;80(1):87–95. https://doi.org/10.1189/jlb.0805445.

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A, Mische S, Li J, Marcu KB, IKKα. IKKβ, and NEMO/IKKγ are each required for the NF-κB-mediated inflammatory response program. J Biol Chem. 2002;277(47):45129–40. https://doi.org/10.1074/jbc.M205165200.

    Article  CAS  PubMed  Google Scholar 

  31. Shiraki A, Kotooka N, Komoda H, Hirase T, Oyama JI, Node K. Pentraxin-3 regulates the inflammatory activity of macrophages. Biochem Biophys Rep. 2016;5:290–5. https://doi.org/10.1016/j.bbrep.2016.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ. The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling. PLoS ONE. 2010;5(12):e14412. https://doi.org/10.1371/journal.pone.0014412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patnaik MM, Tefferi A, Pardanani A. Kit: molecule of interest for the diagnosis and treatment of mastocytosis and other neoplastic disorders. Curr Cancer Drug Targets. 2007;7(5):492–503. https://doi.org/10.2174/156800907781386614.

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Cui J, Yang H, Sun H, Lu R, Gao N, et al. Colonic injuries induced by inhalational exposure to particulate-matter air pollution. Adv Sci (Weinh). 2019;6(11):1900180. https://doi.org/10.1002/advs.201900180.

    Article  CAS  PubMed  Google Scholar 

  35. Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023;21(4):236–47. https://doi.org/10.1038/s41579-022-00805-x.

    Article  CAS  PubMed  Google Scholar 

  36. Biagioli M, Marchianò S, Carino A, Di Giorgio C, Santucci L, Distrutti E, Fiorucci S. Bile acids activated receptors in inflammatory bowel disease. Cells. 2021;10(6):1281. https://doi.org/10.3390/cells10061281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579(7797):123–9. https://doi.org/10.1038/s41586-020-2047-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis. 2015;33(3):327–31. https://doi.org/10.1159/000371670.

    Article  PubMed  Google Scholar 

  39. Pai R, French D, Ma N, Hotzel K, Plise E, Salphati L, et al. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol Sci. 2012;126(2):446–56. https://doi.org/10.1093/toxsci/kfs011.

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Gong Z, Zhang X, Zhu F, Liu Y, ** C, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes. 2020;12(1):1–20. https://doi.org/10.1080/19490976.2020.1819155.

    Article  CAS  PubMed  Google Scholar 

  41. Triantis V, Saeland E, Bijl N, Oude-Elferink RP, Jansen PL. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology (Baltimore, Md.). 2010; 52(2), 656–66. https://doi.org/10.1002/hep.23708.

  42. Phillips AJ, Lobl MB, Hafeji YA, Safranek HR, Mohr AM, Mott JL. Glycosylation of FGFR4 in cholangiocarcinoma regulates receptor processing and cancer signaling. J Cell Biochem. 2022;123(3):568–80. https://doi.org/10.1002/jcb.30204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma Y, Zhang K, Wu Y, Fu X, Liang S, Peng M, Guo J, Liu M. Revisiting the relationship between complement and ulcerative colitis. Scand J Immunol. 2023;98(5):e13329. https://doi.org/10.1111/sji.13329.

    Article  CAS  PubMed  Google Scholar 

  44. Jain U, Otley AR, Van Limbergen J, Stadnyk AW. The complement system in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(9):1628–37. https://doi.org/10.1097/MIB.0000000000000056.

    Article  PubMed  Google Scholar 

  45. Tuboly E, Futakuchi M, Varga G, Érces D, Tőkés T, Mészáros A, et al. C5a inhibitor protects against ischemia/reperfusion injury in rat small intestine. Microbiol Immunol. 2016;60(1):35–46. https://doi.org/10.1111/1348-0421.12338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Major International (Regional) Joint Research Program of the National Natural Science Foundation of China (No. 81920108027 to Y.L.), National Natural Science Foundation of China (No. 82273212 to H.Z.), Chongqing Young and Middle-aged Medical Talents Project (to H.Z.), Funding for Chongqing Young and Middle-Aged Medical Excellence Team (to Y.L.), Research and breeding project of Chongqing Medical Biotechnology Association (No. cmba2022kyym-zkxmQ0006 to H.Z), and Performance Incentive for Scientific Research Institutions of Chongqing Guide Special Projects (No. cstc2020jxjl130014 to H.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Luyao Shen: Investigation, Data Curation, Writing-Original Draft. Cong Wang: Resources, Methodology. Ran Ren: Investigation. Xudong Liu: Visualization. Dongqin Zhou: Methodology. Yu Chen: Methodology. Yu Zhou: Investigation. Juan Lei: Methodology, Data Curation. Yang **ao: Formal analysis, Data Curation. Nan Zhang: Validation. Huakan Zhao: Conceptualization, Writing – Review & Editing, Funding acquisition. Yongsheng Li: Supervision, Project administration, Writing - Review & Editing, Funding acquisition. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Huakan Zhao or Yongsheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor Hongying Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Wang, C., Ren, R. et al. Fibroblast growth factor receptor 4 deficiency in macrophages aggravates experimental colitis by promoting M1-polarization. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01910-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01910-8

Keywords

Navigation