Log in

Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of NF-κB and AP-1

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory activity of piceatannol (trans-3,4,3′,5′-tetrahydroxystilbene) in mouse skin in vivo.

Methods

Female HR-1 hairless mice were topically treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) with or without piceatannol pretreatment. Epidermal protein expression was assessed by Western blot analysis. The cyclooxygenase-2 (COX-2) expression was detected by immunohistochemistry. The DNA binding of nuclear factor-kappaB (NF-κB) and activator protein-1 (AP-1) was examined by the electrophoretic mobility gel shift assay. The catalytic activity of IκBα kinase-β (IKKβ) was measured by in vitro kinase assay.

Results

Pretreatment with piceatannol attenuated TPA-induced expression of COX-2 and inducible nitric oxide synthase (iNOS) in mouse skin. Piceatannol diminished nuclear translocation and the DNA binding of NF-κB through the blockade of phosphorylation and subsequent degradation of IκBα. Piceatannol attenuated the catalytic activity of IKKβ and inhibited the phosphorylation of mitogen-activated protein (MAP) kinases in TPA-treated mouse skin. In addition, piceatannol decreased TPA-induced expression of c-Fos and the DNA binding of AP-1.

Conclusion

Piceatannol inhibits TPA-induced COX-2 and iNOS expression by blocking the activation of NF-κB and AP-1 via suppression of the IKKβ activity and phosphorylation of MAP kinases, which provides a mechanistic basis of its anti-inflammatory effects in mouse skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52:2013–37.

    Article  CAS  PubMed  Google Scholar 

  2. Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA. 2002;99:12483–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Tiano HF, Loftin CD, Akunda J, Lee CA, Spalding J, Sessoms A, et al. Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res. 2002;62:3395–401.

    CAS  PubMed  Google Scholar 

  4. Chun KS, Kundu JK, Park KK, Chung WY, Surh YJ. Inhibition of phorbol ester-induced mouse skin tumor promotion and COX-2 expression by celecoxib: C/EBP as a potential molecular target. Cancer Res Treat. 2006;38:152–8.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chun KS, Cha HH, Shin JW, Na HK, Park KK, Chung WY, et al. Nitric oxide induces expression of cyclooxygenase-2 in mouse skin through activation of NF-κB. Carcinogenesis. 2004;25:445–54.

    Article  CAS  PubMed  Google Scholar 

  6. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res. 2001;480–481:243–68.

    Article  PubMed  Google Scholar 

  7. Chun KS, Keum YS, Han SS, Song YS, Kim SH, Surh YJ. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation. Carcinogenesis. 2003;24:1515–24.

    Article  CAS  PubMed  Google Scholar 

  8. Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, et al. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin. Oncogene. 2005;24:2558–67.

    Article  CAS  PubMed  Google Scholar 

  9. Kundu JK, Shin YK, Kim SH, Surh YJ. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis. 2006;27:1465–74.

    Article  CAS  PubMed  Google Scholar 

  10. Hwang DM, Kundu JK, Shin JW, Lee JC, Lee HJ, Surh YJ. cis-9, trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-κB activation and subsequent COX-2 expression in hairless mouse skin by targeting IκB kinase and PI3 K-Akt. Carcinogenesis. 2007;28:363–71.

    Article  CAS  PubMed  Google Scholar 

  11. Chun KS, Kim SH, Song YS, Surh YJ. Celecoxib inhibits phorbol ester-induced expression of COX-2 and activation of AP-1 and p38 MAP kinase in mouse skin. Carcinogenesis. 2004;25:713–22.

    Article  CAS  PubMed  Google Scholar 

  12. Lee JC, Kundu JK, Hwang DM, Na HK, Surh YJ. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-κB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis. 2007;28:1491–8.

    Article  CAS  PubMed  Google Scholar 

  13. Shrotriya S, Kundu JK, Na HK, Surh YJ. Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res. 2010;70:1932–40.

    Article  CAS  PubMed  Google Scholar 

  14. Kundu JK, Shin YK, Surh YJ. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-κB and AP-1 as prime targets. Biochem Pharmacol. 2006;72:1506–15.

    Article  CAS  PubMed  Google Scholar 

  15. Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res. 2012;750:60–82.

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Kim DH, Park JM, Na HK, Surh YJ. Piceatannol inhibits phorbol ester-induced NF-κB activation and COX-2 expression in cultured human mammary epithelial cells. Nutr Cancer. 2009;61:855–63.

    Article  CAS  PubMed  Google Scholar 

  17. Youn J, Lee JS, Na HK, Kundu JK, Surh YJ. Resveratrol and piceatannol inhibit iNOS expression and NF-κB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer. 2009;61:847–54.

    Article  CAS  PubMed  Google Scholar 

  18. Inoue H, Yokoyama C, Hara S, Tone Y, Tanabe T. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J Biol Chem. 1995;270:24965–71.

    Article  CAS  PubMed  Google Scholar 

  19. Chu SC, Marks-Konczalik J, Wu HP, Banks TC, Moss J. Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem Biophys Res Commun. 1998;248:871–8.

    Article  CAS  PubMed  Google Scholar 

  20. Chun KS, Surh YJ. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol. 2004;68:1089–100.

    Article  CAS  PubMed  Google Scholar 

  21. Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, et al. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate. 2013;73:1135–46.

    Article  CAS  PubMed  Google Scholar 

  22. Larrosa M, Tomas-Barberan FA, Espin JC. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur J Nutr. 2004;43:275–84.

    Article  CAS  PubMed  Google Scholar 

  23. Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 2002;190:279–86.

    Article  CAS  PubMed  Google Scholar 

  24. Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem. 2012;4:2193–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. ** CY, Moon DO, Lee KJ, Kim MO, Lee JD, Choi YH, et al. Piceatannol attenuates lipopolysaccharide-induced NF-κB activation and NF-κB-related proinflammatory mediators in BV2 microglia. Pharmacol Res. 2006;54:461–7.

    Article  CAS  PubMed  Google Scholar 

  26. Islam S, Hassan F, Mu MM, Ito H, Koide N, Mori I, et al. Piceatannol prevents lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor (NF)-kappaB activation by inhibiting IκB kinase (IKK). Microbiol Immunol. 2004;48:729–36.

    Article  CAS  PubMed  Google Scholar 

  27. Son PS, Park SA, Na HK, Jue DM, Kim S, Surh YJ. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKβ as a potential target. Carcinogenesis. 2010;31:1442–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lin SK, Kok SH, Yeh FT, Kuo MY, Lin CC, Wang CC, et al. MEK/ERK and signal transducer and activator of transcription signaling pathways modulate oncostatin M-stimulated CCL2 expression in human osteoblasts through a common transcription factor. Arthritis Rheum. 2004;50:785–93.

    Article  CAS  PubMed  Google Scholar 

  29. Baldwin AS Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.

    Article  CAS  PubMed  Google Scholar 

  30. Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene. 1999;18:6867–74.

    Article  CAS  PubMed  Google Scholar 

  31. Lai CS, Li S, Chai CY, Lo CY, Ho CT, Wang YJ, et al. Inhibitory effect of citrus 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation and tumor promotion in mice. Carcinogenesis. 2007;28:2581–8.

    Article  CAS  PubMed  Google Scholar 

  32. Murias M, Jager W, Handler N, Erker T, Horvath Z, Szekeres T, et al. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol. 2005;69:903–12.

    Article  CAS  PubMed  Google Scholar 

  33. Goto M, Yamada K, Katayama K, Tanaka I. Inhibitory effect of E3330, a novel quinone derivative able to suppress tumor necrosis factor-alpha generation, on activation of nuclear factor-kappa B. Mol Pharmacol. 1996;49:860–73.

    CAS  PubMed  Google Scholar 

  34. Dickinson SE, Melton TF, Olson ER, Zhang J, Saboda K, Bowden GT. Inhibition of activator protein-1 by sulforaphane involves interaction with cysteine in the cFos DNA-binding domain: implications for chemoprevention of UVB-induced skin cancer. Cancer Res. 2009;69:7103–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Settlement Research Grant-2012-0195 of Keimyung University allocated to Joydeb Kumar Kundu.

Conflict of interest

Authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeb Kumar Kundu.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, J., Kundu, J.K. et al. Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of NF-κB and AP-1. Inflamm. Res. 63, 1013–1021 (2014). https://doi.org/10.1007/s00011-014-0777-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0777-6

Keywords

Navigation