Log in

Spontaneous parity breaking and supersymmetry breaking in metastable vacua with consistent

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the compatibility of spontaneous breaking of parity and successful cosmology in a left-right symmetric model where supersymmetry breaking is achieved in metastable vacua. We show that domain walls formed due to this breaking can be removed due to Planck scale suppressed terms, provided the parity breaking scale M R is constrained to remain smaller than 1010 − 1011 GeV. Ensuring metastability is achieved naturally even if the entire mechanism operates at low scales, within a few orders of magnitude of the TeV scale. Taking M R as high as permitted, close to the acceptable reheat temperature after inflation, would require the magnetic phase of the Supersymmetric Quantum Chromodynamics (SQCD) to have set in before the end of inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

    ADS  Google Scholar 

  2. R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  3. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  4. R.N. Mohapatra and R. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Deshpande, J. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].

    ADS  Google Scholar 

  6. Super-Kamiokande collaboration, S. Fukuda et al., Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].

    Article  ADS  Google Scholar 

  7. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  8. SNO collaboration, Q. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.N. Bahcall and C. Pena-Garay, Solar models and solar neutrino oscillations, New J. Phys. 6 (2004) 63 [hep-ph/0404061] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Chang, R. Mohapatra and M. Parida, Decoupling parity and SU(2) R breaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Chang, R. Mohapatra and M. Parida, A new approach to left-right symmetry breaking in unified gauge theories, Phys. Rev. D 30 (1984) 1052 [INSPIRE].

    ADS  Google Scholar 

  12. C.S. Aulakh, A. Melfo and G. Senjanović, Minimal supersymmetric left-right model, Phys. Rev. D 57 (1998) 4174 [hep-ph/9707256] [INSPIRE].

    ADS  Google Scholar 

  13. C.S. Aulakh, K. Benakli and G. Senjanović, Reconciling supersymmetry and left-right symmetry, Phys. Rev. Lett. 79 (1997) 2188 [hep-ph/9703434] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Babu and R.N. Mohapatra, Minimal supersymmetric left-right model, Phys. Lett. B 668 (2008) 404 [ar**v:0807.0481] [INSPIRE].

    ADS  Google Scholar 

  15. S. Patra, A. Sarkar, U. Sarkar and U. Yajnik, Spontaneous parity violation in a supersymmetric left-right symmetric model, Phys. Lett. B 679 (2009) 386 [ar**v:0905.3220] [INSPIRE].

    ADS  Google Scholar 

  16. T. Kibble, Some implications of a cosmological phase transition, Phys. Rept. 67 (1980) 183 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Hindmarsh and T. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Rai and G. Senjanović, Gravity and domain wall problem, Phys. Rev. D 49 (1994) 2729 [hep-ph/9301240] [INSPIRE].

    ADS  Google Scholar 

  19. H. Lew and A. Riotto, Baryogenesis, domain walls and the role of gravity, Phys. Lett. B 309 (1993) 258 [hep-ph/9304203] [INSPIRE].

    ADS  Google Scholar 

  20. S. Abel, S. Sarkar and P. White, On the cosmological domain wall problem for the minimally extended supersymmetric standard model, Nucl. Phys. B 454 (1995) 663 [hep-ph/9506359] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Mishra and U.A. Yajnik, Spontaneously broken parity and consistent cosmology with ransitory domain walls, Phys. Rev. D 81 (2010) 045010 [ar**v:0911.1578] [INSPIRE].

    ADS  Google Scholar 

  22. D. Borah and S. Mishra, Spontaneous R-parity breaking, left-right symmetry and consistent cosmology with transitory domain walls, Phys. Rev. D 84 (2011) 055008 [ar**v:1105.5006] [INSPIRE].

    ADS  Google Scholar 

  23. S. Mishra, U.A. Yajnik and A. Sarkar, Gauge mediated supersymmetry breaking and the cosmology of left-right symmetric model, Phys. Rev. D 79 (2009) 065038 [ar**v:0812.0868] [INSPIRE].

    ADS  Google Scholar 

  24. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. S.A. Abel and V.V. Khoze, Metastable SUSY breaking within the standard model, hep-ph/0701069 [INSPIRE].

  26. D. Koschade, M. McGarrie and S. Thomas, Direct mediation and metastable supersymmetry breaking for SO(10), JHEP 02 (2010) 100 [ar**v:0909.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Haba and H. Ohki, Spontaneous parity violation in SUSY strong gauge theory, JHEP 08 (2011) 021 [ar**v:1104.5405] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Borah and U.A. Yajnik, Supersymmetric left-right models with gauge coupling unification and fermion mass universality, Phys. Rev. D 83 (2011) 095004 [ar**v:1010.6289] [INSPIRE].

    ADS  Google Scholar 

  29. C. Burgess, L.E. Ibáñez and F. Quevedo, Strings at the intermediate scale, or is the Fermi scale dual to the Planck scale?, Phys. Lett. B 447 (1999) 257 [hep-ph/9810535] [INSPIRE].

    ADS  Google Scholar 

  30. I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys. A 15 (2000) 4237 [hep-ph/0007226] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. A. Sarkar, Abhishek and U.A. Yajnik, PeV scale left-right symmetry and baryon asymmetry of the universe, Nucl. Phys. B 800 (2008) 253 [ar**v:0710.5410] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Dev and R. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [ar**v:0910.3924] [INSPIRE].

    ADS  Google Scholar 

  33. D. Borah, S. Patra and U. Sarkar, TeV scale left right symmetry with spontaneous D-parity breaking, Phys. Rev. D 83 (2011) 035007 [ar**v:1006.2245] [INSPIRE].

    ADS  Google Scholar 

  34. D. Borah, Supersymmetric left-right models with B - L odd Higgs doublets, Int. J. Mod. Phys. A 26 (2011) 1305 [INSPIRE].

    ADS  Google Scholar 

  35. A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Kawasaki and F. Takahashi, Late-time entropy production due to the decay of domain walls, Phys. Lett. B 618 (2005) 1 [hep-ph/0410158] [INSPIRE].

    ADS  Google Scholar 

  37. N. Seiberg, Electric-magnetic duality in supersymmetric nonabelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  39. Z.-K. Guo, D.J. Schwarz and Y.-Z. Zhang, Observational constraints on the energy scale of inflation, Phys. Rev. D 83 (2011) 083522 [ar**v:1008.5258] [INSPIRE].

    ADS  Google Scholar 

  40. L.A. Boyle, P.J. Steinhardt and N. Turok, Inflationary predictions reconsidered, Phys. Rev. Lett. 96 (2006) 111301 [astro-ph/0507455] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [ar**v:0803.0547] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

    ADS  Google Scholar 

  43. M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [INSPIRE].

    ADS  Google Scholar 

  44. A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [ar**v:1005.5160] [INSPIRE].

    ADS  Google Scholar 

  45. J. Kopp, M. Lindner, V. Niro and T.E. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [ar**v:0909.2653] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urjit A. Yajnik.

Additional information

Ar**v EPrint: 1107.5438

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borah, D., Yajnik, U.A. Spontaneous parity breaking and supersymmetry breaking in metastable vacua with consistent. J. High Energ. Phys. 2011, 72 (2011). https://doi.org/10.1007/JHEP12(2011)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)072

Keywords

Navigation