Log in

Pure samples of quark and gluon jets at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets + X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7TeV LHC, the pp → γ+2jets sample can provide 98% pure quarkjets with 200 GeV of transverse momentum and a cross section of 5 pb. Toget 10 pb of 200 GeV jets with 90% gluon purity, the pp → 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [ar**v:0806.0848] [ inSPIRE].

    Article  ADS  Google Scholar 

  2. T. Han, D. Krohn, L.-T. Wang and W. Zhu, New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC, JHEP 03 (2010) 082 [ar**v:0911.3656] [ inSPIRE].

    Article  ADS  Google Scholar 

  3. J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [ar**v:1011.2268] [ inSPIRE].

    Article  ADS  Google Scholar 

  4. J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black, et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [ar**v:1010.3698] [ inSPIRE].

    Article  ADS  Google Scholar 

  5. Y. Cui, Z. Han and M.D. Schwartz, W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons, Phys. Rev. D 83 (2011) 074023 [ar**v:1012.2077] [ inSPIRE].

    ADS  Google Scholar 

  6. A. Abdesselam, E. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [ar**v:1012.5412] [ inSPIRE].

    Article  ADS  Google Scholar 

  7. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [ar**v:0802.2470] [ inSPIRE].

    Article  ADS  Google Scholar 

  8. D. Krohn, J. Shelton and L.-T. Wang, Measuring the Polarization of Boosted Hadronic Tops, JHEP 07 (2010) 041 [ar**v:0909.3855] [ inSPIRE].

    Article  ADS  Google Scholar 

  9. A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [ inSPIRE].

    Article  ADS  Google Scholar 

  10. J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [ar**v:1001.5027] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [ar**v:1001.0014] [ inSPIRE].

    Article  ADS  Google Scholar 

  12. R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, ar**v:1102.0561 [ inSPIRE].

  13. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [ar**v:0706.2334] [ inSPIRE].

    Article  ADS  Google Scholar 

  14. D. Stump, J. Huston, J. Pumplin, W.-K. Tung, H. Lai, et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [ inSPIRE].

    Article  ADS  Google Scholar 

  15. A. Hoecker et al., TMVA Toolkit for Multivariate Data Analysis with ROOT, http://tmva.sourceforge.net/.

  16. R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [ inSPIRE].

    ADS  Google Scholar 

  17. http://root.cern.ch/.

  18. OPAL collaboration, O. Biebel, A comparison of b and uds quarks to gluon jets, SPIRES Conference C96/08/11.1 (1996) [ inSPIRE].

  19. M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [ inSPIRE].

    ADS  Google Scholar 

  20. R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [ar**v:1105.3676] [ inSPIRE].

    ADS  Google Scholar 

  21. A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the \( O\left( {\alpha_s^2} \right) \) Dijet Soft Function, JHEP 08 (2011) 054 [ar**v:1105.4628] [ inSPIRE].

    Article  ADS  Google Scholar 

  22. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [ inSPIRE].

    ADS  Google Scholar 

  23. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [ inSPIRE].

    ADS  Google Scholar 

  24. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [ar**v:0911.0681] [ inSPIRE].

    Article  ADS  Google Scholar 

  25. J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, ar**v:1106.3076 [ inSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Schwartz.

Additional information

Ar**v ePrint: 1104.1175

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallicchio, J., Schwartz, M.D. Pure samples of quark and gluon jets at the LHC. J. High Energ. Phys. 2011, 103 (2011). https://doi.org/10.1007/JHEP10(2011)103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)103

Keywords

Navigation