Log in

The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We show that the 4-Dimensional Composite Higgs Model (4DCHM) could provide an even better explanation than the Standard Model (SM) of the current Large Hadron Collider (LHC) data pointing to the discovery of a neutral Higgs boson. The full particle spectrum of this scenario is derived without any approximation and implemented in automated computational tools to enable fast phenomenological investigation. Several benchmark sets compliant with the aforementioned data are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [ar**v:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [ar**v:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. CDF and D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [ar**v:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].

    ADS  Google Scholar 

  6. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  8. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [ar**v:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  12. A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [ar**v:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  13. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [ar**v:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [ar**v:1206.7120] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Azatov, R. Contino and J. Galloway, Contextualizing the Higgs at the LHC, ar**v:1206.3171 [INSPIRE].

  16. S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [ar**v:1110.1613] [INSPIRE].

    Article  Google Scholar 

  17. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [ar**v:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Barducci, A. Belyaev, S. De Curtis, S. Moretti and G.M. Pruna, Exploring Drell-Yan signals from the 4D composite Higgs model at the LHC, JHEP 04 (2013) 152 [ar**v:1210.2927] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Barducci, L. Fedeli, S. Moretti, S. Curtis and G. Pruna, Leptonic final states from di-boson production at the LHC in the 4-dimensional composite Higgs model, JHEP 04 (2013) 038 [ar**v:1212.4875] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Barducci, S. De Curtis, K. Mimasu and S. Moretti, Multiple \( Z\prime \to t\overline{t} \) signals in a 4D composite Higgs model, ar**v:1212.5948 [INSPIRE].

  23. A. Carmona and F. Goertz, Custodial leptons and Higgs decays, ar**v:1301.5856 [INSPIRE].

  24. A. Semenov, LanHEPa package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, ar**v:1005.1909 [INSPIRE].

  25. G. Bélanger, N.D. Christensen, A. Pukhov and A. Semenov, SLHAplus: a library for implementing extensions of the Standard Model, Comput. Phys. Commun. 182 (2011) 763 [ar**v:1008.0181] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  27. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [ar**v:1207.6082] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Brooijmans et al., Les Houches 2011: physics at TeV colliders new physics working group report, ar**v:1203.1488 [INSPIRE].

  29. Mathematica Edition: version 7.0, Wolfram Research, Inc., Champaign U.S.A. (2008).

  30. The Particle Data Group webpage, http://pdg.lbl.gov/.

  31. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  32. M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [ar**v:1111.5869] [INSPIRE].

    Article  ADS  Google Scholar 

  33. CMS collaboration, Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 103 [ar**v:1203.5410] [INSPIRE].

    ADS  Google Scholar 

  34. CMS collaboration, Search for a vector-like quark with charge 2/3 in t + Z events from pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 271802 [ar**v:1109.4985] [INSPIRE].

    Article  Google Scholar 

  35. CMS collaboration, Search for heavy bottom-like quarks in 4.9 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 123 [ar**v:1204.1088] [INSPIRE].

    ADS  Google Scholar 

  36. CMS collaboration, Search B bZ, CMS-PAS-EXO-11-066, CERN, Geneva Switzerland (2011).

  37. CMS collaboration, Search for pair produced fourth-generation up-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with a lepton in the final state, Phys. Lett. B 718 (2012) 307 [ar**v:1209.0471] [INSPIRE].

    ADS  Google Scholar 

  38. CMS collaboration, Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 154 [ar**v:1210.7471] [INSPIRE].

    ADS  Google Scholar 

  39. ATLAS collaboration, Search for exotic same-sign dilepton signatures (b quark, T 5/3 and four top quarks production) in 4.7 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-130, CERN, Geneva Switzerland (2012).

  40. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Z. Kunszt, S. Moretti and W.J. Stirling, Higgs production at the LHC: an update on cross-sections and branching ratios, Z. Phys. C 74 (1997) 479 [hep-ph/9611397] [INSPIRE].

    Google Scholar 

  42. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, ar**v:1101.0593 [INSPIRE].

  43. LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, ar**v:1307.1347 [INSPIRE].

  44. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).

  45. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).

  46. CMS Higgs TWiki webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12045TWiki.

  47. LHC Higgs Cross section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, ar**v:1209.0040 [INSPIRE].

  48. D. Barducci et al., The Higgs sector of the 4DCHM after the XLVIII Rencontres de Moriond, ar**v:1306.6876 [INSPIRE].

  49. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [ar**v:0709.1075] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  51. F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  53. J.R. Ellis, M. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the mass of the Higgs boson about 10 GeV?, Phys. Lett. B 83 (1979) 339 [INSPIRE].

    Article  ADS  Google Scholar 

  54. T.G. Rizzo, Gluon final states in Higgs boson decay, Phys. Rev. D 22 (1980) 178 [Addendum ibid. D 22 (1980) 1824] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Pruna.

Additional information

ArXiv ePrint: 1302.2371

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barducci, D., Belyaev, A., Brown, M.S. et al. The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC. J. High Energ. Phys. 2013, 47 (2013). https://doi.org/10.1007/JHEP09(2013)047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)047

Keywords

Navigation