Log in

Supergravity black holes and billiards and the Liouville integrable structure associated with Borel algebras

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we show that the supergravity equations describing both cosmic billiards and a large class of black-holes are, generically, both Liouville integrable as a consequence of the same universal mechanism. This latter is provided by the Liouville integrable Poissonian structure existing on the dual Borel algebra \(\mathbb{B}_{\mathbb N} \) of the simple Lie algebra A N−1. As a by product we derive the explicit integration algorithm associated with all symmetric spaces U/H* relevant to the description of time-like and space-like p-branes. The most important consequence of our approach is the explicit construction of a complete set of conserved involutive hamiltonians \(\{\mathfrak{h}_{\alpha}\} \) that are responsible for integrability and provide a new tool to classify flows and orbits. We believe that these will prove a very important new tool in the analysis of supergravity black holes and billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. M. Gutperle and A. Strominger, Spacelike branes, JHEP 04 (2002) 018 [hep-th/0202210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. K.S. Stelle, Brane solutions in supergravity, prepared for 11th Jorge Andre Swieca Summer School on Particle and Fields, Campos do Jordao, Brazil, 14-27 January (2001) [SPIRES].

  4. D.V. Gal'tsov and O.A. Rytchkov, Generating branes via σ-models, Phys. Rev. D 58 (1998) 122001 [hep-th/9801160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. P. Fré et al., Cosmological backgrounds of superstring theory and solvable algebras: Oxidation and branes, Nucl. Phys. B 685 (2004) 3 [hep-th/0309237] [SPIRES].

    Article  ADS  Google Scholar 

  6. P. Fré, K. Rulik and M. Trigiante, Exact solutions for Bianchi type cosmological metrics, Weyl orbits of E 8(8) subalgebras and p-branes, Nucl. Phys. B 694 (2004) 239 [hep-th/0312189] [SPIRES].

    Article  ADS  Google Scholar 

  7. P. Fré, F. Gargiulo and K. Rulik, Cosmic billiards with painted walls in non-maximal supergravities: A worked out example, Nucl. Phys. B 737 (2006) 1 [hep-th/0507256] [SPIRES].

    Article  ADS  Google Scholar 

  8. P. Fré, F. Gargiulo, K. Rulik and M. Trigiante, The general pattern of Kac Moody extensions in supergravity and the issue of cosmic billiards, Nucl. Phys. B 741 (2006) 42 [hep-th/0507249] [SPIRES].

    Article  ADS  Google Scholar 

  9. P. Fré and A.S. Sorin, Integrability of supergravity billiards and the generalized Toda lattice equation, Nucl. Phys. B 733 (2006) 334 [hep-th/0510156] [SPIRES].

    Article  ADS  Google Scholar 

  10. P. Fré and A.S. Sorin, The arrow of time and the Weyl group: all supergravity billiards are integrable, ar**v:0710.1059 [SPIRES].

  11. P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. V.D. Ivashchuk and V.N. Melnikov, Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity, J. Math. Phys. 41 (2000) 6341 [hep-th/9904077] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. J. Demaret, M. Henneaux and P. Spindel, Nonoscillatory behavior in vacuum Kaluza-Klein cosmologies, Phys. Lett. B 164 (1985) 27 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. J. Demaret, J.L. Hanquin, M. Henneaux, P. Spindel and A. Taormina, The fate of the mixmaster behavior in vacuum inhomogeneous Kaluza-Klein cosmological models, Phys. Lett. B 175 (1986) 129 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. J. Demaret, Y. De Rop and M. Henneaux, Chaos in nondiagonal spatially homogeneous cosmological models in space-time dimensions <= 10, Phys. Lett. B 211 (1988) 37 [SPIRES].

    ADS  Google Scholar 

  16. T. Damour, M. Henneaux, B. Julia and H. Nicolai, Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models, Phys. Lett. B 509 (2001) 323 [hep-th/0103094] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. T. Damour, S. de Buyl, M. Henneaux and C. Schomblond, Einstein billiards and overextensions of finite- dimensional simple Lie algebras, JHEP 08 (2002) 030 [hep-th/0206125] [SPIRES].

    Article  ADS  Google Scholar 

  18. T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. S. de Buyl, M. Henneaux, B. Julia and L. Paulot, Cosmological billiards and oxidation, Fortsch. Phys. 52 (2004) 548 [hep-th/0312251] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  20. J. Brown, O.J. Ganor and C. Helfgott, M-theory and E 10 : billiards, branes and imaginary roots, JHEP 08 (2004) 063 [hep-th/0401053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. F. Englert, M. Henneaux and L. Houart, From very-extended to overextended gravity and M- theories, JHEP 02 (2005) 070 [hep-th/0412184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Damour, Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras, gr-qc/0501064 [SPIRES].

  23. T. Damour, Poincaré, relativity, billiards and symmetry, hep-th/0501168 [SPIRES].

  24. M. Henneaux and B. Julia, Hyperbolic billiards of pure D = 4 supergravities, JHEP 05 (2003) 047 [hep-th/0304233] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys. B 812 (2009) 343 [ar**v:0806.2310] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Günaydin, A. Neitzke, B. Pioline and A. Waldron, Quantum attractor flows, JHEP 09 (2007) 056 [ar**v:0707.0267] [SPIRES].

    Article  Google Scholar 

  27. A. Bouchareb et al., G 2 generating technique for minimal D = 5 supergravity and black rings, Phys. Rev. D 76 (2007) 104032 [Erratum ibid. D 78 (2008) 029901] [ar**v:0708.2361] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. D. Gaiotto, W.W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [ar**v:0710.1638] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Fré and A.S. Sorin, Supergravity black holes and billiards and Liouville integrable structure of dual Borel algebras, ar**v:0903.2559 [SPIRES].

  30. A.A. Arhangel'skii, Completely integrable hamiltonian systems on a group of triangular matrices, Math. USSR Sb. 36 (1980) 127.

    Article  Google Scholar 

  31. P. Deift, L.C. Li, T. Nanda and C. Tomei, The toda flow on a generic orbit is integrable, Commun. Pure and Appl. Math. 39 (1986) 183.

    Article  MATH  MathSciNet  Google Scholar 

  32. Y. Kodama and J. Ye, Toda hierarchy with indefinite metric, Physica D 91 (1996) 321 [solv-int/9505004].

    MathSciNet  Google Scholar 

  33. Y. Kodama and J. Ye, Iso-spectral deformations of general matrix and their reductions on Lie algebras, Commun. Math. Phys. 178 (1996) 765 [solv-int/9506005].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. L. Andrianopoli, R. D'Auria, S. Ferrara, P. Fré and M. Trigiante, R-R scalars, U-duality and solvable Lie algebras, Nucl. Phys. B 496 (1997) 617 [hep-th/9611014] [SPIRES].

    Article  ADS  Google Scholar 

  35. L. Andrianopoli et al., Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249 [hep-th/9612202] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Fré, U-duality, solvable Lie algebras and extremal black- holes, hep-th/9702167 [SPIRES].

  37. P. Fré, Solvable Lie algebras, BPS black holes and supergravity gaugings, Fortsch. Phys. 47 (1999) 173 [hep-th/9802045] [SPIRES].

    Article  ADS  Google Scholar 

  38. G. Arcioni et al., N = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositions, Nucl. Phys. B 542 (1999) 273 [hep-th/9807136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Bertolini, M. Trigiante and P. Fré, N = 8 BPS black holes preserving 1/8 supersymmetry, Class. Quant. Grav. 16 (1999) 1519 [hep-th/9811251] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  40. M. Bertolini, P. Fré and M. Trigiante, The generating solution of regular N = 8 BPS black holes, Class. Quant. Grav. 16 (1999) 2987 [hep-th/9905143] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  41. L. Andrianopoli, R. D'Auria, S. Ferrara, P. Fré and M. Trigiante, E 7(7) duality, BPS black-hole evolution and fixed scalars, Nucl. Phys. B 509 (1998) 463 [hep-th/9707087] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Bertolini and M. Trigiante, Regular BPS black holes: macroscopic and microscopic description of the generating solution, Nucl. Phys. B 582 (2000) 393 [hep-th/0002191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Bertolini and M. Trigiante, Regular RR and NS-NS BPS black holes, Int. J. Mod. Phys. A 15 (2000) 5017 [hep-th/9910237] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [SPIRES].

    Article  ADS  Google Scholar 

  45. L. Andrianopoli, F. Cordaro, P. Fré and L. Gualtieri, Non-semisimple gaugings of D = 5 N = 8 supergravity and FDAs, Class. Quant. Grav. 18 (2001) 395 [hep-th/0009048] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  46. L. Andrianopoli, F. Cordaro, P. Fré and L. Gualtieri, Non-semisimple gaugings of D = 5 N = 8 supergravity, Fortsch. Phys. 49 (2001) 511 [hep-th/0012203] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  47. P. Fré, Gaugings and other supergravity tools of p-brane physics, hep-th/0102114 [SPIRES].

  48. P. Fré and J. Rosseel, On full-edged supergravity cosmologies and their Weyl group asymptotics, ar**v:0805.4339 [SPIRES].

  49. D.V. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija 9 (1975) 297.

    Article  Google Scholar 

  50. S. Cecotti, Homogeneous Kähler manifolds and T algebras in N = 2 supergravity and superstrings, Commun. Math. Phys. 124 (1989) 23 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [SPIRES].

    Article  ADS  Google Scholar 

  52. V. Cortés, Alekseevskian spaces, Diff. Geom. Appl. 6 (1996) 129.

    Article  MATH  Google Scholar 

  53. P. Fré et al., Tits-Satake projections of homogeneous special geometries, Class. Quant. Grav. 24 (2007) 27 [hep-th/0606173] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  54. V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525 [SPIRES].

    Article  ADS  Google Scholar 

  55. V.a. Belinsky, I.m. Khalatnikov and E.m. Lifshitz, A general solution of the Einstein equations with a time singularity, Adv. Phys. 31 (1982) 639 [SPIRES].

    Article  ADS  Google Scholar 

  56. A. Keurentjes, Poincaré duality and G +++ algebras, Commun. Math. Phys. 275 (2007) 491 [hep-th/0510212] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  57. G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [ar**v:0902.4438] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. A. Borel and J. Tits, Groupes réductifs, Publications Mathémathiques de l'IHES 27 (1965) 55 [Publications Mathémathiques de l'IHES 41 (1972) 253].

    MathSciNet  Google Scholar 

  59. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, American Mathematical Society (2001).

  60. W. Chemissany, J. Rosseel, M. Trigiante and T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories, Nucl. Phys. B 830 (2010) 391 [ar**v:0903.2777] [SPIRES].

    Article  ADS  Google Scholar 

  61. P. Fré and A.S. Sorin, The integration algorithm for Nilpotent orbits of G/H* Lax systems: for extremal black holes, ar**v:0903.3771 [SPIRES].

  62. W. Chemissany, P. Fré and A.S. Sorin, The integration algorithm of Lax equation for both generic Lax matrices and generic initial conditions, ar**v:0904.0801 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Fré.

Additional information

Ar**v ePrint: 0903.2559

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fré, P., Sorin, A.S. Supergravity black holes and billiards and the Liouville integrable structure associated with Borel algebras. J. High Energ. Phys. 2010, 66 (2010). https://doi.org/10.1007/JHEP03(2010)066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)066

Keywords

Navigation