Log in

Deformed Seiberg-Witten curves for ADE quivers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive Seiberg-Witten like equations encoding the dynamics of \( \mathcal{N}=2 \) ADE quiver gauge theories in presence of a non-trivial Ω-background along a two dimensional plane. The ϵ-deformed prepotential and the chiral correlators of the gauge theory are extracted from difference equations that can be thought as a non-commutative (or quantum) version of the Seiberg-Witten curves for the quiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].

  2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. K. Landsteiner, E. Lopez and D.A. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, Nucl. Phys. B 507 (1997) 197 [hep-th/9705199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Landsteiner and E. Lopez, New curves from branes, Nucl. Phys. B 516 (1998) 273 [hep-th/9708118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. I.P. Ennes, S.G. Naculich, H. Rhedin and H.J. Schnitzer, One instanton predictions of a Seiberg-Witten curve from M-theory: the Symmetric representation of SU(N), Int. J. Mod. Phys. A 14 (1999) 301 [hep-th/9804151] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. I.P. Ennes, S.G. Naculich, H. Rhedin and H.J. Schnitzer, One instanton predictions for nonhyperelliptic curves derived from M-theory, Nucl. Phys. B 536 (1998) 245 [hep-th/9806144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. I.P. Ennes, S.G. Naculich, H. Rhedin and H.J. Schnitzer, One instanton predictions of Seiberg-Witten curves for product groups, Phys. Lett. B 452 (1999) 260 [hep-th/9901124] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. I.P. Ennes, S.G. Naculich, H. Rhedin and H.J. Schnitzer, Two antisymmetric hypermultiplets in N = 2 SU(N) gauge theory: Seiberg-Witten curve and M-theory interpretation, Nucl. Phys. B 558 (1999) 41 [hep-th/9904078] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.D. Edelstein, M. Gomez-Reino and J. Mas, Instanton corrections in N = 2 supersymmetric theories with classical gauge groups and fundamental matter hypermultiplets, Nucl. Phys. B 561 (1999) 273 [hep-th/9904087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S.G. Naculich and H.J. Schnitzer, Many roads lead to N = 2 Seiberg-Witten theory, hep-th/0407179 [INSPIRE].

  11. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].

  14. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  15. R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matones relation in the presence of gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. G.W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. I. Antoniadis, S. Hohenegger, K. Narain and T. Taylor, Deformed Topological Partition Function and Nekrasov Backgrounds, Nucl. Phys. B 838 (2010) 253 [ar**v:1003.2832] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [ar**v:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  24. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [ar**v:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, ar**v:0908.4052 [INSPIRE].

  26. A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [ar**v:0910.5670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N), J. Phys. A 43 (2010) 195401 [ar**v:0911.2396] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [ar**v:0911.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [ar**v:1006.4505] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Dorey, S. Lee and T.J. Hollowood, Quantization of Integrable Systems and a 2d/ 4d Duality, JHEP 10 (2011) 077 [ar**v:1103.5726] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Mironov, A. Morozov, A. Popolitov and S. Shakirov, Resolvents and Seiberg-Witten representation for Gaussian beta-ensemble, Theor. Math. Phys. 171 (2012) 505 [ar**v:1103.5470] [INSPIRE].

    Article  Google Scholar 

  32. H.-Y. Chen, N. Dorey, T.J. Hollowood and S. Lee, A New 2d/ 4d Duality via Integrability, JHEP 09 (2011) 040 [ar**v:1104.3021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin Systems via beta-deformed Matrix Models, ar**v:1104.4016 [INSPIRE].

  34. M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Omega deformed B-model for rigid N = 2 theories, ar**v:1109.5728 [INSPIRE].

  35. M. Manabe, Deformed planar topological open string amplitudes on Seiberg-Witten curve, JHEP 04 (2012) 082 [ar**v:1201.6618] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, ar**v:1204.0913 [INSPIRE].

  37. M.-x. Huang, On Gauge Theory and Topological String in Nekrasov-Shatashvili Limit, JHEP 06 (2012) 152 [ar**v:1205.3652] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [ar**v:1006.4822] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. F. Fucito, J. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [ar**v:1103.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Hellerman, D. Orlando and S. Reffert, String theory of the Omega deformation, JHEP 01 (2012) 148 [ar**v:1106.0279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and M-theory, JHEP 07 (2012) 061 [ar**v:1204.4192] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Nekrasov and V. Pestun, Seiberg-Witten Geometry of N = 2 Superconformal Theories, Talk at the Conference Maths of String and Gauge Theory, London U.K., May 3–5 2012.

  43. H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [ar**v:0911.4244] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. M. Billó et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP 08 (2012) 166 [ar**v:1206.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory, Phys. Lett. B 357 (1995) 342 [hep-th/9506102] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. M. Matone, Seiberg-Witten duality in Dijkgraaf-Vafa theory, Nucl. Phys. B 656 (2003) 78 [hep-th/0212253] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ricci Pacifici.

Additional information

ArXiv ePrint: 1210.3580

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fucito, F., Morales, J.F. & Pacifici, D.R. Deformed Seiberg-Witten curves for ADE quivers. J. High Energ. Phys. 2013, 91 (2013). https://doi.org/10.1007/JHEP01(2013)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)091

Keywords

Navigation