Log in

Phylogenetic relationships among deer in China derived from mitochondrial DNA cytochromeb sequences

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

The phylogenetic relationships of Cervidae and Moschidae were examined using partial sequence data of mitochondrial DNA (mtDNA) cytochromeb. Ten new sequences were obtained for six species of Cervidae and Moschidae, and aligned with those previously reported for other deer species. Our results demonstrated that the phylogenetic status of the taxa inferred from molecular data was congruent with taxonomy based on morphological studies. Cervidae formed a monophyletic group that consists of four subfamilies: Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. Moschidae occurred at the base of the Cervidae clade. On the basis of molecular clocks for genetic distance, the divergence time of mtDNA haplotypes within the subfamily Cervinae, among subfamilies in Cervidae, and between Moschidae and Cervidae was estimated to date 2–7 MYA, 6–10 MYA and 8–13 MYA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy K. 1994. The establishment of a hybrid zone between red and sika deer (genusCervus). Molecular Ecology 3: 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Anderson S., Bankier A. T., Barrell B. G., de Brui** M. H. L., Coulson A. R., Drouin J., Eperson I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J. H., Staden R. and Young I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Bouvrain P. G., Geraads D. and Jehenne Y. 1989. New data relating to the classification of the Cervidae (Artiodctyla, Mammalia). Zoologischer Anzeiger 1/2: 82–90.

    Google Scholar 

  • Chikuni K., Mori Y., Tabata T., Saito M., Monma M. and Kosugiyama M. 1995. Molecular phylogeny based on the k-casein and cytochromeb sequences in mammalian suborder Ruminantia. Journal of Molecular Evolution 41: 859–866.

    Article  CAS  PubMed  Google Scholar 

  • Comincini S., Sironi M., Bandi C., Giunta C., Rubini M. and Fontana F. 1996. RAPD analysis of systematic relationships among the Cervidae. Heredity 76: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Cook C. E., Wang Y. and Sensabaugh G. 1999. A mitochondrial control region and cytochromeb phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Molecular Phylogeny and Evolution 1: 47–56.

    Article  Google Scholar 

  • Cronin M. A. 1991. Mitochondrial-DNA phylogeny of deer (Cervidae). Journal of Mammalogy 72: 533–566.

    Article  Google Scholar 

  • Cronin M. A., Stuart R., Pierson B. J. and Patton J. C. 1996. K-casein gene phylogeny of higher ruminants (Pecora, Aeriodactyla). Molecular Phylogeny and Evolution 6: 295–311.

    Article  CAS  Google Scholar 

  • Dong W. 1993. The fossil records of deer in China. [In: Deer of China. N. Ohtaishi, ed]. Elsevier, Amsterdam: 95–102.

    Google Scholar 

  • Emerson B. C. and Tate M. L. 1993. Genetic analysis of evolutionary relationships among deer (subfamily Cervinae). Journal of Heredity 84: 266–273.

    CAS  PubMed  Google Scholar 

  • Felsenstein J. 1989. PHYLIP-phylogeny inference package version 3.2. Cladistics 5: 164–166.

    Google Scholar 

  • Fontana F. and Rubini M. 1990. Chromosomal evolution in Cervidae. BioSystems 24: 157–174.

    Article  CAS  PubMed  Google Scholar 

  • Groves C. P. and Grubb P. 1987. Relationships of living deer. [In: Biology and management of the Cervidae. C. M. Wemmer, ed]. Smithsonian Institute Press, Washington, D. C.: 21–59.

    Google Scholar 

  • Han D. 1985. Preliminary study of the fossils of the order Artiodacyla from the ancient fossil locality of Lufeng: Renlixue Xuebao. Acta Anthropologica Sinica 4: 4–54. [In Chinese with English summary]

    Google Scholar 

  • Hasegawa M., Kishino H. and Yano T. 1989. Estimation of branching dates among primates by molecular clocks of nuclear DNA which showed down in Homonoidea. Journal of Human Evolution 18: 461–476.

    Article  Google Scholar 

  • Irwin D. M., Kocher T. D. and Wilson A. C. 1991. Evolution of the cytochromeb gene of mammals. Journal of Molecular Evolution 32: 128–144.

    Article  CAS  PubMed  Google Scholar 

  • Janis C. M. 1988. New ideas in ungulate phylogeny and evolution. Trends in Ecology and Evolution 3: 291–297.

    Article  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kraus F. and Miyamoto M. 1991. Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Systematic Zoology 40: 117–130.

    Article  Google Scholar 

  • Lan H., Shi L. M. and Suzuki H. 1993. Restriction site polymorphism in ribosomal DNA of muntjacs. Chinese Science Bulletin 38: 1659–1664.

    CAS  Google Scholar 

  • Li M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1998a. MtDNA difference and molecular phylogeny among musk deer, Chinese water deer, munjak and deer. Acta Theriologica Sinica 18: 184–191. [In Chinese with English summary]

    Google Scholar 

  • Li M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1999. Study of mtDNA divergence and phylogeny of four species of deer (GenusCervus). Acta Zoological Sinica 1: 99–105. [In Chinese with English summary]

    Google Scholar 

  • Li M., Wang X. M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1998b. The origine and genetic division of four subspecies of red deer (Cervus eaphus). Zoological Research 3: 177–183. [In Chinese with English summary]

    Google Scholar 

  • Lister A. M. 1984. Evolutionary and ecological origins of British deer. Proceedings of the Royal Society of Edinburgh 82B: 205–229.

    Google Scholar 

  • Meyer A. 1994. Shortcomings of the cytochromeb gene as a molecular marker. Trends in Ecology and Evolution 9: 278–280.

    Article  Google Scholar 

  • Miyamoto M., Kraus F. and Ryder O. A. 1990. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proceedings of the National Academy of Sciences of the USA 87: 6127–6131.

    Article  CAS  PubMed  Google Scholar 

  • Nagata J., Masuda R. and Yoshida M. C. 1995. Nucleotide sequences of the cytochrome b and 12SrRNA genes in the Japanese sika deer. Journal of Mammal Science 20(1): 1–8.

    Google Scholar 

  • Ohtaishi N. 1992. The origins and evolution of deer in China. [In: The deer in China. H. L. Sheng, ed]. East China Normal University Press, Shanghai: 8–18. [In Chinese with English summary]

    Google Scholar 

  • Polziehn R. O. and Strobeck C. 1998. Phylogeny of wapiti, red deer, sika deer, and other north American cervids as determined from mitochondrial DNA. Molecular Phylogeny and Evolution 2: 249–258.

    Article  Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method: New method for reconstructing phylogenetic trees. Molecular Biology Evolution 4: 406–425.

    CAS  Google Scholar 

  • Scott K. M. and Janis C. M. 1987. Phylogenetic relationships of the Cervidae, and the case for a superfamily Cervoidea. [In: Biology and management of the Cervidae. C. M. Wemmer, ed]. Smithsonian Institute Press, Washington, D. C.: 3–20.

    Google Scholar 

  • Sheng H. L. 1992. Family Moschidae. [In: The deer in China. H. L. Sheng, ed]. East China Normal University Press, Shanghai: 45–88. [In Chinese with English summary]

    Google Scholar 

  • Simpson G. G. 1945. Principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History 85: 1–350.

    Google Scholar 

  • Su B., Wang Y. X., Lan H., Wang W. and Zhang Y. P. 1999. Phylogenetic status of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Molecular Phylogeny and Evolution 3: 241–249.

    Article  Google Scholar 

  • Swofford D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony. Version 3.1.1. Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Tamate H. B., Tatsuzawa S., Suda K., Izawa M., Doi T., Sunagawa K., Miyahira F. and Tado H. 1998. Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. Journal of Mammalogy 79: 1396–1403.

    Article  Google Scholar 

  • Tamate H. B. and Tsuchiya T. 1995. Mitochondrial DNA polymorphism in subspecies of the Japanese sika deer,Cervus nippon. Journal of Heredity 3: 211–215.

    Google Scholar 

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Walsh P. S., Metzger D. A. and Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based ty** from forensic material. BioTechniques 10: 506–513.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

Associate Editor was Bogumila Jędrzejewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Tamate, H.B., Wei, F.W. et al. Phylogenetic relationships among deer in China derived from mitochondrial DNA cytochromeb sequences. Acta Theriol 48, 207–219 (2003). https://doi.org/10.1007/BF03194160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194160

Key words

Navigation