Log in

The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Methods and Results

With echocardiography and dynamic carbon 11-labeled acetate (C-11 acetate) positron emission tomographic imaging, C-11 acetate kinetics and a parameter that estimates mechanical ventricular efficiency (the work metabolic index) were defined in eight patients with dilated cardiomyopathy. The effect of afterload reduction with nitroprusside on these parameters was evaluated in six of these patients. Nitroprusside increased stroke work index but decreased the C-11 clearance rate. The work metabolic index determined noninvasively increased and correlated well with an invasive approach. The work metabolic index was inversely correlated with systemic vascular resistance. Nitroprusside shifted this relationship upward and to the left.

Conclusion

This method of estimating efficiency is feasible and may represent a unique noninvasive approach for the evaluation of cardiac performance and responses to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis ST. Diseases of the heart. New York: MacMillan, 1933:1.

    Google Scholar 

  2. Katz A. Changing strategies in the management of heart failure. J Am Coll Cardiol 1989;13:513–23.

    PubMed  CAS  Google Scholar 

  3. Packer M. How should we judge the efficacy of drug therapy in patients with chronic congestive heart failure? The insight of six blind men. J Am Coll Cardiol 1987;9:433–8.

    PubMed  CAS  Google Scholar 

  4. Franciosa J, Park M, Levine T. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 1981;47:33–9.

    Article  PubMed  CAS  Google Scholar 

  5. Firth B, Dehmer G, Markham R, Willerson J, Hillis L. Assessment of vasodilator therapy in patients with severe congestive heart failure: limitations of left ventricular ejection fraction and volumes. Am J Cardiol 1982;50:954–9.

    Article  PubMed  CAS  Google Scholar 

  6. Liang C-S, Sherman L, Doherty J, Wellington K, Lee V, Hood W. Sustained improvement of cardiac function in patients with congestive heart failure after short term infusion with dobutamine. Circulation 1984;69:113–9.

    PubMed  CAS  Google Scholar 

  7. Packer M, Medina N, Yakushak M. Hemodynamic and clinical limitations of long-term inotropic therapy with amrinone in patients with severe chronic heart failure. Circulation 1984;70:1038–47.

    PubMed  CAS  Google Scholar 

  8. Katz A. Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation 1986;73:III-184–90.

    CAS  Google Scholar 

  9. Packer M, Carver J, Rodeheffer R, et al. The effect of oral milrinone on survival in chronic severe heart failure: the PROMISE Study Research Group. N Engl J Med 1991;325:1468–75.

    PubMed  CAS  Google Scholar 

  10. Eichhorn E, Bedotto J, Malloy C, et al. Effect of β-adrenergic blockade on myocardial function and energetics in congestive heart failure: improvements in hemodynamic, contractile and diastolic performance with bucindolol. Circulation 1990;82:473–83.

    PubMed  CAS  Google Scholar 

  11. Waagstein F, Hjalmarson A, Varnauska E, Wallentin I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 1975;37:1022–36.

    Article  PubMed  CAS  Google Scholar 

  12. Swedberg K, Waagstein F, Hjalmarson A, Wallentin I. Prolonged survival in congestive cardiomyopathy by beta receptor blockade. Lancet 1979;1:1374–6.

    Article  PubMed  CAS  Google Scholar 

  13. Cohn J, Archibald D, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: results of a Veterans Administration Cooperative Study. N Engl J Med 1987;314:1547–52.

    Google Scholar 

  14. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study. N Engl J Med 1987;316:1429–35.

    Google Scholar 

  15. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular function and congestive heart failure. N Engl J Med 1991;325:293–302.

    Google Scholar 

  16. Evans C, Matsuoka Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Phyiosol (Lond) 1915;49:378–405.

    CAS  Google Scholar 

  17. Bing R, Hammond M, Handelsman J, et al. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 1949;38:1–24.

    Article  PubMed  CAS  Google Scholar 

  18. Baxley W, Dodge H, Rackley C, Sandler H, Pugh D. Left ventricular mechanical efficiency in man with heart disease. Circulation 1977;55:564–8.

    PubMed  CAS  Google Scholar 

  19. Nichols A, Pearson M, Sciacca R, Cannon P. Left ventricular mechanical efficiency in coronary artery disease. J Am Coll Cardiol 1986;7:270–9.

    PubMed  CAS  Google Scholar 

  20. Suga H, Igarashi Y, Yamada O, Goto Y. Mechanical efficiency of the left ventricle as a function of preload, afterload and contractility. Heart Vessels 1985;1:3–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kameyama T, Asanoi H, Ishizada S, Yamanishi K, Fujita M, Sasayama S. Energy conversion efficiency in human left ventricle. Circulation 1992;85:988–96.

    PubMed  CAS  Google Scholar 

  22. Monrad E, Baim D, Smith H, Lanoue A. Milrinone, dobutamine, and nitroprusside: comparative effects on hemodynamics and myocardial energetics in patients with severe congestive heart failure. Circulation 1986;73(suppl):III-168–74.

    CAS  Google Scholar 

  23. Hasenfuss G, Holubarsch C, Heiss W, et al. Myocardial energetics in patients with dilated cardiomyopathy: influence of nitroprusside and enoximone. Circulation 1989;80:51–64.

    PubMed  CAS  Google Scholar 

  24. Thompson D, Juul S, Wilmhurst P, et al. Effects of nitroprusside upon cardiac work, efficiency and substrate extraction in severe left ventricular failure. Br Heart J 1981;46:394–400.

    Article  PubMed  CAS  Google Scholar 

  25. Wilmhurst P, Thompson D, Juul S, Jenkins B, Coltart D, Webb-Peploe M. Comparison of the effects of amrinone and nitroprusside on haemodynamics, contractility and myocardial metabolism in patients with cardiac failure due to coronary artery disease and dilated cardiomyopathy. Br Heart J 1984;52:38–48.

    Article  Google Scholar 

  26. Baller D, Bretschneider H, Hellige G. A critical look at currently used indirect indices of myocardial oxygen consumption. Basic Res Cardiol 1981;76:163–81.

    Article  PubMed  CAS  Google Scholar 

  27. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 1979;236:H498–505.

    PubMed  CAS  Google Scholar 

  28. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 1983;53:306–18.

    PubMed  CAS  Google Scholar 

  29. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–96.

    PubMed  CAS  Google Scholar 

  30. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054–63.

    PubMed  CAS  Google Scholar 

  31. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–93.

    PubMed  CAS  Google Scholar 

  32. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988;63:628–34.

    PubMed  CAS  Google Scholar 

  33. Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C] acetate and dynamic positron emission tomography. Circulation 1989;79:134–42.

    PubMed  CAS  Google Scholar 

  34. Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med 1989;30:1489–99.

    PubMed  CAS  Google Scholar 

  35. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1–11C] acetate and dynamic positron tomography. Circulation 1989;80:863–72.

    PubMed  CAS  Google Scholar 

  36. Kotzerke J, Hicks R, Wolfe E, et al. Three-dimensional assessment of myocardial oxidative metabolism: a new approach for regional determination of PET-derived carbon-11 acetate kinetics. J Nucl Med 1990;31:1876–93.

    PubMed  CAS  Google Scholar 

  37. Buck A, Wolpers H, Hutchins G, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32:1950–7.

    PubMed  CAS  Google Scholar 

  38. Wolpers H, Buck A, Nguyen N, et al. Non-invasive assessment of cardiac efficiency by [C-11] acetate and positron emission tomography [Abstract]. Circulation 1990;82(suppl):III-613.

    Google Scholar 

  39. Schlant R, Tsagaris T, Robertson R. Studies on the acute cardiovascular effects of intravenous sodium nitroprusside. Am J Cardiol 1962;9:51–9.

    Article  PubMed  CAS  Google Scholar 

  40. Chatterjee K, Parmley W, Ganz W, et al. Hemodynamic and metabolic responses to vasodilator therapy in acute myocardial infarction. Circulation 1973;48:1183–93.

    PubMed  CAS  Google Scholar 

  41. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [1–11C] acetate: an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot 1982;33:505–12.

    Article  PubMed  CAS  Google Scholar 

  42. Silverman N, Ports T, Snider A, Schiller NB, Carlssom E, Heilborn DC. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation 1980;62:548–57.

    PubMed  CAS  Google Scholar 

  43. Schiller N. Two-dimensional echocardiographic determination of left ventricular volume, systolic function and mass: summary and discussion of the 1989 recommendations of the American Society of Echocardiography. Circulation 1991;84:I-280–7.

    CAS  Google Scholar 

  44. Spain M, Smith M, Grayburn P, et al. Quantitative assessment of mitral regurgitation by Doppler color flow imaging: angiographic and hemodynamic correlations. J Am Coll Cardiol 1989;13:585–90.

    Article  PubMed  CAS  Google Scholar 

  45. Randle P, England P, Denton R. Control of the tricarboxylic acid cycle and its interaction with glycolysis during acetate utilization in the rat heart. Biochem J 1970;117:677–95.

    PubMed  CAS  Google Scholar 

  46. Williamson J. Effects of insulin and starvation on the metabolism of acetate and pyruvate by the perfused rat heart. Biochem J 1964;93:97–105.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out during the tenure of an Established Investigatorship of the American Heart Association (Dr. Schwaiger) and was supported in part by the National Institutes of Health, Bethesda, Md. (RO1 HL41047-01 and MO1 RR00042), through the Kughn Clinical Research Center CRC No. 918. Dr. Beanlands was a research fellow supported by the Heart and Stroke Foundation of Canada until June 30, 1991, and by the Medical Research Council of Canada Centennial Fellowship from July 1, 1991, to Sept. 30, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beanlands, R.S.B., Armstrong, W.F., Hicks, R.J. et al. The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J Nucl Cardiol 1, 3–16 (1994). https://doi.org/10.1007/BF02940007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940007

Key Words

Navigation