Log in

Use ofl-buthionine sulfoximine for the efficient expression of disulfide-containing proteins in cell-free extracts ofEscherichia coli

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We have developed a technique to improve the formation of correct disulfide bonds within cell-free synthesized proteins. Via the use of a metabolic inhibitor of glutamate-cysteine ligase, the accumulation of glutathione was effectively prevented in cell-free extracts, thereby enabling the stable maintenance of redox potential for extended reaction periods. As a result, in a reaction in which a model protein contatining 9 disulfide bonds was synthesized under cell-free conditions, the final amount of active protein products was increased by 50%. The method presented in this study will provide a rapid and robust route to the high-throughput expression and screening of proteins which require multiple disulfide bonds for their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranov, V. I., I. Y. Morozov, S. A. Ortlepp, and A. S. Spirin (1989) Gene expression in a cell-free system on the preparative scale.Gene 84: 463–466.

    Article  CAS  Google Scholar 

  2. Endo, Y. and T. Sawasaki (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system.J. Struct. Funct. Genomics 5: 45–57.

    Article  CAS  Google Scholar 

  3. Elbaz, Y., S. Steiner-Mordoch, T. Danieli, and S. Schuldiner (2004)In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state.Proc. Natl. Acad. Sci. USA 101: 1519–1524.

    Article  CAS  Google Scholar 

  4. Kim, Y. E., D. M. Kim, and C. Y. Choi (2006) Zeolite-mediated cation exchange enhances the stability of mRNA during cell-free protein synthesis.Biotechnol. Bioprocess Eng. 11: 258–261.

    Article  CAS  Google Scholar 

  5. Kim, D. M., C. Y. Choi, J. H. Ahn, T. W. Kim, N. Y. Kim, I. S. Oh, and C. G. Park (2006) Development of a rapid and productive cell-free protein synthesis system.Biotechnol. Bioprocess Eng. 11: 235–239.

    Article  CAS  Google Scholar 

  6. Ahn, J. H., M. Y. Hwang, I. S. Oh, K. M. Park, G. H. Hahn, C. Y. Choi, and D. M. Kim (2006) Preparation method forEscherichia coli S30 extracts completely dependent upon tRNA addition to catalyze cell-free protein synthesis.Biotechnol. Bioprocess Eng. 11: 420–424.

    Article  CAS  Google Scholar 

  7. Kim, D. M. and J. R. Swartz (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts ofEscherichia coli.Biotechnol. Bioeng. 85: 122–129.

    Article  CAS  Google Scholar 

  8. Oh, I. S., D. M. Kim, T. W. Kim, C. G. Park, and C. Y. Choi (2006) Providing an oxidizing environment for the cell-free expression of disulfide-containing proteins by exhausting the reducing activity ofEscherichia coli S30 extract.Biotechnol. Prog. 22: 1225–1228.

    Article  CAS  Google Scholar 

  9. Kadokura, H., F. Katzen, and J. Beckwith (2003) Protein disulfide bond formation in prokaryotes.Annu. Rev. Biochem. 72: 111–135.

    Article  CAS  Google Scholar 

  10. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system fromEscherichia coli.Eur. J. Biochem. 239: 881–886.

    Article  CAS  Google Scholar 

  11. Kang, S. H., D. M. Kim, H. J. Kim, S. Y. Jun, K. Y. Lee, and H. J. Kim (2005) Cell-free production of aggregation-prone proteins in soluble and active forms.Biotechnol. Prog. 21: 1412–1419.

    Article  CAS  Google Scholar 

  12. Kim, D. M. and C. Y. Choi (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane.Biotechnol. Prog. 12: 645–649.

    Article  CAS  Google Scholar 

  13. Rahman, I., A. Kode, and S. K. Biswas (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method.Nat. Protoc. 1: 3159–3165.

    Article  CAS  Google Scholar 

  14. Kim, R. G. and C. Y. Choi (2000) Expression-independent consumption of substrates in cell-free expression system fromEscherichia coli.J. Biotechnol. 84: 27–32.

    Article  CAS  Google Scholar 

  15. Griffith, O. W. and A. Meister (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine).J. Biol. Chem. 254: 7558–7560.

    CAS  Google Scholar 

  16. Griffith, O. W. (1982) Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis.J. Biol. Chem. 257: 13704–13712.

    CAS  Google Scholar 

  17. Huang, C. S., W. R. Moore, and A. Meister (1988) On the active site thiol of gamma-glutamylcysteine synthetase: relationship to catalysis, inhibition, and regulation.Proc. Natl. Acad. Sci. USA 85: 2464–2468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Myung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, IS., Kim, TW., Ahn, JH. et al. Use ofl-buthionine sulfoximine for the efficient expression of disulfide-containing proteins in cell-free extracts ofEscherichia coli . Biotechnol. Bioprocess Eng. 12, 574–578 (2007). https://doi.org/10.1007/BF02931357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931357

Keywords

Navigation