Log in

Characterization of a specific signal from human pancreatic tumors heterotransplanted into nude mice

Study by high resolution1H NMR and HPLC

  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Summary

In a previous study, we demonstrated the existence of a 3.2 ± 0.2 ppm peak in the1H NMR spectrum at 60 MHz from human pancreatic adenocarcinomas (Capan-1 cell) heterotransplanted intonude mice. This peak, which is not present in normal human pancreas, was attributed to enhanced membrane fluidity and/ or an increase in phospholipid turnover. The present study was designed to identify this signal by comparing the1H NMR spectra recorded in vivo at 100 MHz from Capan-1 tumors, after suppression of the tissular water proton peak, to those recorded from normal pancreatic tissue, and to those recorded at 300 MHz from lipid extracts. The1H NMR spectra at 100 MHz of the Capan-1 tumors in vivo exhibited three main peaks in the 3.2 ± 0.2 ppm region: 1. A peak at 2.8 ± 0.1 ppm from CH2 protons of the acyl chains of unsaturated phospholipids; 2. A peak at 3.2 ± 0.1 ppm from the protons of the N(CH3)3 group of choline; and 3 A peak at 3.5 ± 0.1 ppm attributed to GPC.

The NMR1H 300 MHz spectrum of phospholipid extracts of Capan-1 tumors displayed 12 principal resonances, of which only the N(CH3)3 peak of PC had a similar chemical shift to that observed at low resolution (3.2 ± 0.2 ppm). This peak had a higher intensity in the xenografts than in normal human pancreatic tissue. HPLC analysis of the same lipid extracts from Capan-1 cells in culture, of tumors derived from these cells and from normal pancreas showed: 1. Identical concentrations of the different phospholipids from cancerous human pancreatic cells in vivo and in culture; and 2. A significantly higher level of PC in the extracts of normal human pancreatic tissue.

The increase in intensity of the N(CH3)3 peak of PC in the Capan-1 tumors was not thought to be caused by an increase in PC concentration, but to a difference in conformation or mobility of the PC protons in the xenografts. The increase in relaxation time in cancerous tissue (from 60 to 125 ms) was also taken to be evidence in favor of a high mobility of protons. The peak observed at 3.2 ± 0.2 ppm in the low resolution NMR spectra from the Capan-1 tumors in vivo thus represents a combination of several phenomena: 1. An

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

diacylglycerol

GPC:

glycerophosphorylcholine

HPLC:

high performance liquid chromatography

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

NMR:

nuclear magnetic resonance

TMS:

tetramethylsilane

VOI:

volume of interest

References

  1. Go VLM and DiMagno EP. Pancreatic exocrine adenocarcinoma.Br J Hosp Med 1977; 18: 567–576.

    PubMed  CAS  Google Scholar 

  2. Fitzgerald PJ. Pancreatic cancer. The dismal disease.Arch Pathol Lab Med 1981; 100: 513–515.

    Google Scholar 

  3. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, Hamburger C. Noninvasive differentiation of tumors with use of localized H-l MR spectroscopy in vivo: initial experience in patients with cerebral tumors.Radiology 1989; 172: 541–548.

    PubMed  CAS  Google Scholar 

  4. Glickson JD. Clinical NMR spectroscopy of tumors: current status and future directions.Invest Radiol 1989; 24: 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  5. Damadian R. Tumor detection by nuclear magnetic resonance.Science 1971; 171: 1151–1153.

    Article  PubMed  CAS  Google Scholar 

  6. Stark DD, Moss AA, Goldberg HI, Davis PL, Federle MP. Magnetic resonance and CT of the normal and diseased pancreas: a comparative study.Radiology 1984; 150: 153–162.

    PubMed  CAS  Google Scholar 

  7. Haaga JR. Magnetic resonance imaging of the pancreas.Radiol Clin North Am 1984; 22: 869–877.

    PubMed  CAS  Google Scholar 

  8. Lee JKT, Heiken JP, Dixon WT. Detection of hepatic metastases by proton spectroscopic imaging.Radiology 1985; 156:429–433.

    PubMed  CAS  Google Scholar 

  9. Chen W, Frazer JW, Dennis L, McBride CM, Boddie AW. Proton magnetic resonance spectral patterns of metastasizing and nonmetastasizing human colon cancer.Arch Surg 1987; 122: 1284–1288.

    PubMed  CAS  Google Scholar 

  10. May GL, Wright LC, Holmes KT, Williams PG, Smith ICP, Wright PE, Fox RM, Mountford CE. Assignment of methylene proton resonances in NMR spectra of embryonic and transformed cells to plasma membrane triglyceride.J Biol Chem 1986; 261: 3048–3053.

    PubMed  CAS  Google Scholar 

  11. Mountford CE, Grossman G, Reid G, Fox RM. Characterization of transformed cells and tumors by proton nuclear magnetic resonance spectroscopy.Cancer Res 1982; 42: 2270–2276.

    PubMed  CAS  Google Scholar 

  12. Mountford CE, Grossman G, Gatenby PA, Fox RM. High-resolution proton nuclear magnetic resonance: application to the study of leukaemic lymphocytes.BrJ Cancer 1980; 41: 1000–1003.

    CAS  Google Scholar 

  13. Murat C, Esclassan J, Daumas M, Levrat JH, Palevody C, Vincensini PD, Hollande E. Enhanced membrane phospholipid metabolism in human pancreatic adenocarcinoma cell lines detected by low-resolution1H nuclear magnetic resonance spectroscopy.Pancreas 1989; 4: 145–152.

    Article  PubMed  CAS  Google Scholar 

  14. Jamieson JD. The secretory process in the pancreatic exocrine cell: morphologic and biochemical aspects, Jorpes JH, Mutt V, eds.,Secretin, Cholecystokinin, Pancreazymin and Gastrin. Springer-Verlag, Berlin, Heidelberg, New York, 1973,.

    Google Scholar 

  15. Esclassan J, Murat C, Aired S, Vincensini P, Hollande E. Demonstration of a new resonance peak by proton NMR in rat pancreas stimulated with cerulein.Pancreas 1990; 5: 580–588.

    Article  PubMed  CAS  Google Scholar 

  16. F:ögh J, Fögh JM, Orfeo T. One hundred and twenty- seven cultured human tumor cell lines producing tumors innude mice.J Natl Cancer Inst 1977; 59: 221–226.

    Google Scholar 

  17. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues.J Biol Chem 1957; 226: 497–508.

    PubMed  CAS  Google Scholar 

  18. Connelly A, Counsell C, Lohman JAB, Ordige RJ. Outer volume suppressed image related in vivo spectroscopy (OSIRIS), a high-sensitivity localization technique.J Magn Res 1988; 78: 519–525.

    Google Scholar 

  19. Hore PJ. Solvent suppression in Fourier transform nuclear magnetic resonance.J Magn Res 1983; 55: 283–300.

    CAS  Google Scholar 

  20. Agris PF, Campbell ID. Proton nuclear magnetic resonance of intact Friend leukemia cells: phosphorylcholine increase during differentiation.Science 1982; 216: 1325–1327.

    Article  PubMed  CAS  Google Scholar 

  21. Bell JD, Brown JCC, Kubal G, Sadler PJ. N.M.R. invisible Iactate in blood plasma.FEBS Lett 1988; 235: 81–86.

    Article  PubMed  CAS  Google Scholar 

  22. Evanochko WT, Sakai T, Ng TC, Krishna NR, Kim HD, Zeidler RB, Ghanta VK, Brockman RW, Schiffer LM, Braunschweiger PG, Glickson JD. N.M.R. study of in vivo RIF-1 tumors: analysis of perchloric acid extracts and identification of1H,31P and13C resonances.Biochim Biophys Acta 1984; 805: 104–116.

    Article  PubMed  CAS  Google Scholar 

  23. Maxwell RJ, Prysor-Jones RA, Jenkens JS, Griffiths JR. Vasoactive intestinal peptide stimulates glycolysis in pituitary tumours;1H-N.M.R. detection of Iactate in vivo.Biochim Biophys Acta 1988; 968: 86–90.

    Article  PubMed  CAS  Google Scholar 

  24. Sparling ML, Zidovetzki R, Muller L, Chan SI. Analysis of membrane lipids by 500 MHz1H NMR.Anal Biochem 1989; 178:67–76.

    Article  PubMed  CAS  Google Scholar 

  25. Bernett JT, Meredith NK, Akins JR, Hannon WH. Determination of serum phospholipid metabolic profiles by high-performance liquid chromatography.J Liq Chromatogr 1985; 8: 1573–1591.

    Article  CAS  Google Scholar 

  26. Chen SSH, Kou AY. Improved procedure for the separation of phospholipids by high-performance liquid chromatography.J Chromatogr 1982; 227: 25–31.

    Article  PubMed  CAS  Google Scholar 

  27. Hauser H and Gains N. Spontaneous vesiculation of phospholipids: a simple and quick method of forming unilamellar vesicles.Proc Natl Acad Sci USA 1982; 79: 1683–1687.

    Article  PubMed  CAS  Google Scholar 

  28. Pelech SL and Vance DE. Signal transduction via phosphatidylcholine cycles.Trends Biochem Sci 1989; 14: 28–30.

    Article  CAS  Google Scholar 

  29. Palevody C, Dupont MA, Hollande E, Rao R, Commenges G, Haran R. Analyse par resonance magnetique nucleaire (RMN) et microscopie electronique de cellules pancreatiques cancereuses humaines: etude comparative.Biol Cell 1983; 49: 33a.

    Google Scholar 

  30. Moscat J, Cornet ME, Diaz-Meco MT, Larrodera P, Lopez-Alanon D, Lopez-Barahona M. Activation of phosphatidylcholine-specific phospholipase C in cell growth and oncogene transformation.Biochem Soc Trans 1989; 17:988–991.

    PubMed  CAS  Google Scholar 

  31. Bell JD, Sadler PJ, Macleod AF, Turner PR, La Ville A.1H NMR studies of human blood plasma: assignment for resonances for lipoproteins.FEBS Lett. 1987; 219: 239–243.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandez Y, Cambon-Gros C, Deltour P, Muntane J, Canal MT, Mitjavila S. Dietary polyunsaturated fatty acid deficiency: consequences for Ca2+ transport by hepatic microsomal membranes in relation with their physicochemical state.Food Add Contamin 1990; 7: S158-S161.

    Google Scholar 

  33. Christon R, Fernandez Y, Cambon-Gros C, Periquet A, Deltour P, Leger CL, Mitjavila S. The effect of dietary essential fatty acid deficiency on the composition and properties of the liver microsomal membrane of rats.J Nutr 1988; 118: 1310–1318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemin-Thomas, C., Esclassan, J., Palevody, C. et al. Characterization of a specific signal from human pancreatic tumors heterotransplanted into nude mice. Int J Pancreatol 13, 175–185 (1993). https://doi.org/10.1007/BF02924438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924438

Key Words

Navigation