Log in

Imaginary angle fractional Fourier transform and its optical implementation

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The concept of imaginary angle fractional Fourier transform is proposed. Its existence and additive operation are proved. With this concept, FRT is expanded to the optical transform of convex lens outside the range of double focal length and that of concave lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A, 1993, 10: 1875.

  2. Ozaktas, H. M., Mendlovic, D., Fractional Fourier transforms and their optical implementation, II,J. Opt. Soc. Am. A, 1993, 10: 2522.

    Article  Google Scholar 

  3. Lohmann, A. W., Mendlovic, D., Fractional Fourier transform: photonic implementation,Applied Optics, 1994, 33: 7661.

    Google Scholar 

  4. Pellat-Finet, P., Fresnel diffraction and the fractional-order Fourier transform.Optics Letters, 1994, 19: 1388.

    Article  Google Scholar 

  5. Liu, S., Xu, J., Zhang, Y.et al. General optical implementation of fractional Fourier transforms.Optics Letters, 1995, 20: 1053.

    Article  Google Scholar 

  6. Dorsch, R. G., Fractional Fourier transforms of variable order based on a modular lens system,Appl. Opt., 1995, 34: 6016.

    Article  Google Scholar 

  7. Bernardo, L. M., Soares, O. D. D., Fractional Fourier transforms and imaging,J. Opt. Soc. Am. A, 1994, 11: 2622.

    Article  Google Scholar 

  8. Ozaktas, H. M., Barshan, B., Mendlovic D., Fractional Fourier transforms as a tool for analyzing beam propagation and spherical mirror resonators,Optics Letters, 1994, 19: 1678.

    Article  Google Scholar 

  9. Dorsch, R. G., Lohmann, A. W., Fractional Fourier transform used for a lens-design problem,Applied Optics, 1995, 34: 4111.

    Article  Google Scholar 

  10. Mendlovic, D., Ozaktas, H. M., Lohmann, A. W., Graded index fibers, Wigner-distribution functions, and the fractional Fourier transform,Appl. Opt., 1994, 33: 6188.

    Google Scholar 

  11. Dorsch, R. G., Lohmann, A. W., Bitran, Y.et al. Chirp filtering in the fractional Fourier domain,Applied Optics, 1994, 33: 7599.

    Google Scholar 

  12. Ozaktas, H. M., Barshan, B., Mendlovic, D.et al. Convolution, filtering, and multiplexing in fractional Fourier domains, and their relation to chirp and wavelet transforms.J. Opt. Soc. Am. A, 1994, 11: 547.

    Article  MathSciNet  Google Scholar 

  13. Ozaktas, H. M., Barshan, B., Mendlovic, D.et al. Space-variant filtering in fractional Fourier domains,Inst. Phys. Conf. Ser., 1994, 139: 285.

    Google Scholar 

  14. Granieri, S., Trabocchi, O., Sicre, E. E., Fractional Fourier transform applied to spatial filtering in the Fresnel domain,Optics Communications, 1995, 119: 275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, J., Liu, L. & Li, G. Imaginary angle fractional Fourier transform and its optical implementation. Sci. China Ser. E-Technol. Sci. 40, 374–378 (1997). https://doi.org/10.1007/BF02919423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919423

Keywords

Navigation