Log in

The interaction between ADAM22 and 14-3-3β

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities.Adam22 is highly expressed in human brain. Theadam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved byin vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koji, S., Kazuto, Y., Yoshiharu, M. et al., Cloning and chromosomal map** of mouse adamll, adam22 and adam23, Gene, 1999, 236: 79–86.

    Article  Google Scholar 

  2. Wrolfsberg, T. G., Primakoff, P., Myles, D. G., ADAM, a novel family of membrane protein containing a disintergrin and metalloprotease domain: multipotential functions in cell-cell and cell matrix interactions, J. Cell Biol., 1995, 131: 275–278.

    Article  Google Scholar 

  3. Wrolfsberg, T. G., White, J. M., ADAMs in fertilization and development, Dev. Biol., 1997, 180: 389–401.

    Article  Google Scholar 

  4. http://www.med.virginia.edu/~jag6n/adams.html

  5. Koji, S., Yukio, O., Yoshikazu, H. et al., Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrin highly expressed in the brain, Biochem, J., 1998, 334: 93–98.

    Google Scholar 

  6. Frederick, M. A., Roger, B., Robert, E. K. et al., Short Protocola In Molecular Biology, 3rd ed., 1997.

  7. Fu, H., Romesh, R., Shane, C. et al., 14-3-3 Proteins: structure, function, and regulation, Annu. Rev. Pharmacol. Toxicol., 2000, 40: 617–647.

    Article  PubMed  CAS  Google Scholar 

  8. Xu, R., Cai, J., Xu, T. et al., Molecular cloning and map** of a novel ADAM gene (ADAM29) to human chromosome 4, Genetics, 1999, 62: 537–539.

    CAS  Google Scholar 

  9. Wang, F., Xu, R., Zhu, P. et al., Preliminary function analysis of a cloned novel human gene ADAM29, Science in China, Ser. C, 2001, 44(4): 392–399.

    CAS  Google Scholar 

  10. Santiago, C., Jose, M. P. F., Jose, M. L. et al., ADAM23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the βV β 3 through an RGD-independent mechanism, Molecular Biology of the Cell, 2000, 11: 1457–1469.

    Google Scholar 

  11. http://cubic.bioc.columbia.edu/predictprotein/submitdef.html

  12. Scidmore, M. A., Hackstadt, T., Mammalian 14-3-3β associates with theChlamydia trachomatis inclusion membrane via its interaction with IncG, Mol. Microbiol., 2001, 39(6): 1638–1650.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, S. H., Kobayashi, R., Graves, P. R. et al., Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein, J. Biol. Chem., 1997, 272(43): 27281–27287.

    Article  PubMed  CAS  Google Scholar 

  14. Furlanetto, R. W., Dey, B. R., Lopaczynski, W. et al., 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor, Biochem. J., 1997, 327(3): 765–771.

    PubMed  CAS  Google Scholar 

  15. Kosaki, A., Yamada, K., Suga, J. et al., 14-3-3β protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3′ -kinase activity in 3T3L1 adipocytes, J. Biol. Chem., 1998, 273(2): 940–944.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, Y., Jacobs, C., Hook, K. E. et al., Binding of 14-3-3β to the carboxyl terminus of Wee 1 increases Wee 1 stability, kinase activity, and G2-M cell population, Cell Growth Differ, 2000, 11(4): 211–219.

    PubMed  CAS  Google Scholar 

  17. Van, P. C., Van, J. C., Ruurs, P. et al., 14-3-3 isotypes facilitate coupling of protein kinase C-zetato Raf-1: negative regulation by 14-3-3 phosphorylation, Biochem. J., 2000, 345(2): 297–306.

    Article  Google Scholar 

  18. Han, D. C., Rodriguez, L. G., Guan, J. L., Identification of a novel interaction between integrin β1 and 14-3-3β, Oncogene, 2001 20(3): 346–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Sang, Y., Xu, R. et al. The interaction between ADAM22 and 14-3-3β. Sci. China Ser. C.-Life Sci. 45, 577–582 (2002). https://doi.org/10.1007/BF02879745

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02879745

Keywords

Navigation