Log in

Identification of late blight, Colorado potato beetle, and blackleg resistance in three Mexican and two South American wild 2x (1EBN)Solanum species

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Wild potatoes are important sources of genes for resistance to disease and insect pests. A collection of wild Mexican and South AmericanSolarium species from the US potato Genebank was evaluated under laboratory and/or field conditions for their reaction to late blight (Phytophthora infestans), Colorado potato beetle (CPB,Leptinotarsa decemlineata Say), and blackleg (Erwinia carotovora subsp.atroseptica (van Hall) Dye) in order to identify individual genotypes with multiple resistance genes. Late blight inoculations using aggressive isolates (US-8/A2 and US-11/A1 mating types) of P.infestans revealed a wide range of variation for resistance between and within the accessions of the wild species tested. For late blight, susceptible as well as moderately to highly resistant genotypes were observed in all the species tested. However, at least one accession from the three Mexican and one South American wild diploid species tested showed a relatively uniform high level of resistance toP. infestans. These includedS. bulbocastanum, S. pinnatisectum, S. cardiophyllum, andS. circaeifolium. Two accessions from South American speciesS. commersonii were highly susceptible to late blight. For the Colorado potato beetle test, only one species,S. pinnatisectum appeared uniformly resistant to CPB under field conditions. Results of screening for blackleg resistance showed that there were major differences between genotypes in the wild species. Accessions ofS. circaeifolium PI 498119 andS. bulbocastanum PI 243504 were identified as having significantly higher blackleg resistance than cultivated potato and the other wild species tested. However, genotypes from these two accessions were more susceptible to late blight and CPB. Characterization of theP. infestans isolate P1801C.16 used for late blight evaluation and multi-locus isolate tests using US-8/A2 and US-11/A1 races revealed that the resistance inS. pinnatisectum genotypes tested corresponded to a race-non-specific genetic system, which was different from any existing R genes.Solanum pin-natisectum genotypes with both high levels of late blight and CPB resistance as well as blackleg resistance genotypes identified in the present study represent a diverse gene pool that may be useful for development of new potato cultivars with multiple disease and insect resistance. The potential utilization of these valuable sources for improvement of cultivated potato is discussed.

Resumen

Las papas silvestres son la fuente importante de genes de resistencia a las enfermedades y piagas. Una colección de especies silvestres mexicanas y sudamericanas deSolanum del banco de genes de papa de EUA fue evaluada bajo condiciones de laboratorio y campo para reacción al tizón tardio (Phytophthora infestans), escarabajo Colorado de la papa (CPB,Leptinotarsa decemlineata Say) y pierna negra (Erwinia carotovora subsp.atroseptica (van Hall) Dye) con el objeto de identificar genotipos individuales con genes multiples de resistencia. Inoculaciones hechas usando aislamientos agresivos de P.infestans (tipos de apareamiento US-8/A2 y US-11/A1) revelaron un amplio rango de variación para resistencia entre y dentro de las accesiones de las especies silvestres probadas. Para tizón tardío se observaron tanto genotipos susceptibles como moderados a altamente resistentes en todas las especies probadas. Sin embargo, por lo menos una accesión de las especies silvestres diploides de las tres mexicanas y una sudamericana mostraron un alto nivel de resistencia relativamente uniforme aP. infestans. Estos incluyeronS. bulbocastanum, S. pinnatisectum, S. cardiophyllum yS. circaeifolium. Dos accesiones de la especie sudamericanaS. commersonii fueron altamente susceptible al tizón tardío. Solamente la especieS. pinnatisectum mostró resistencia uniforme al escarabajo Colorado bajo condiciones de campo. Los resultados del tamizado para resistencia a la pierna negra demostraron la existencia de diferencias mayores en las especies silvestres. Las accesiones deS. circaeifolium PI 498119 yS. bulbocas-tanum PI 243504 se identificaron como poseedoras de una resistencia significativamente alta a la pierna negra en comparacion con las especies cultivadas de papa, al igual que otras especies silvestres probadas. Sin embargo, los genotipos de estas dos accesiones fueron más susceptibles al tizón tardio y al escarabajo Colorado. La caracterización del aislamiento PI801C.16 usado para la evaluacién de tizón tardio y la prueba de aislamiento multi-locus utilizando las razas US-8/A2 y US-11/A1 revelaron que la resistencia en los genotipos probados deS. pinnatisectum, corresponden a una raza no específica del sistema genético, la cual era diferente de cualquiera de los genes R existentes. Los genotiposS. pinnatisectum con altos niveles de resistencia a tizón tardío y al escarabajo Colorado, lo mismo que los genotipos de resistencia a la pierna negra, identificados en el presente estudio representan un conjunto de genes que pueden ser utiles para el desarrollo de cultivares nuevos de papa con multiple resistencia a enfermedades y plagas. Se discute la utilizatión potencial de estas valiosas fuentes de resistencia para el mejoramiento de papa cultivada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPB:

Colorado potato beetle

DSV:

disease severity values

EBN:

Endosperm Balance Number

LRC:

Lethbridge Research Centre

Literature Cited

  • Bains PS, VS Bisht, DR Lynch, LM Kawchuk, and JP Helgeson. 1999. Identification of stem soft rot (Erwinia carotovora subspeciesatroseptica) resistance in potato. Am J Potato Res 76:137–141.

    Google Scholar 

  • Bamberg JB, CA Longtine, and EB Radcliffe. 1996. Fine screeningSolanum (potato) germplasm accessions for resistance to Colorado potato beetle. Am Potato J 73:211–223.

    Google Scholar 

  • Bamberg JB, MW Martin, and JJ Schartner. 1994. Elite selections of tuberbearingSolanum species germplasm.In: Inter-Regional Potato Introduction Station, NRSP-6, Sturgeon Bay, WI. pp. 14–15.

    Google Scholar 

  • Bergelson J, M Kreitman, EA Stahl, and DC Tian. 2001. Evolutionary dynamics of plant R-genes. Science 292:2281–2285.

    Article  PubMed  CAS  Google Scholar 

  • Bisht VS, PS Bains, and JR Letal. 1993. A simple and efficient method to assess susceptibility of potato to stem rot byErwinia carotovora subspecies. Am Potato J 70:611–616.

    Google Scholar 

  • Black, W. 1970. The nature and inheritance of field resistance to late blight (Phytophthora infestans) in potatoes. Am Potato J 47:279–288.

    Google Scholar 

  • Carputo D, M Speggiorin, P Garreffa, A Raio, and LM Monti. 1996. Screening for resistance to tuber soft rot and blackleg in diploidSolanum species andS. tuberosum haploids. J Genet Breed 50:221–226.

    Google Scholar 

  • Caten CE, and JL **ks. 1968. Spontaneous variability of single isolates ofPhytophthora infestans. I. Cultural variation. Can J Bot 46:329–348.

    Article  Google Scholar 

  • Dangl JL, and JDG Jones. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  • Deahl KL, DA Inglis, and SP DeMuth. 1993. Testing for resistance to metalaxyl inPhytophthora infestans isolates from Northwestern Washington. Am Potato J 70:779–795.

    Article  CAS  Google Scholar 

  • Debener T, F Salamini, and C Gebhardt. 1990. Phytogeny of wild and cultivatedSolanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 79:360–368.

    Article  CAS  Google Scholar 

  • Demeke T, DR Lynch, LM Kawchuk, GC Kozub, and JD Armstrong. 1996. Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Reports 15:662–667.

    Article  CAS  Google Scholar 

  • Douches DS, DA Inglis, JP Helgeson, and CR Brown. 2001. Partial resistance toPhytophthora infestans in fourSolanum crosses. Am J Potato Res 78:9–17.

    Google Scholar 

  • Douches DS, WW Kirk, K Jastrzebski, C Long, and R Hammerschmidt. 1997. Susceptibility of potato varieties and advanced breeding lines (Solanum tuberosum L.) toPhytophthora infestans (Mont.) de Bary in greenhouse screenings. Am Potato J 74:75–86.

    Article  Google Scholar 

  • Ehlenfeldt MK, and RE Hanneman Jr. 1984. The use of Endosperm Balance Number and 2n gametes to transfer exotic germplasm in potato. Theor Appl Genet 68:155–161.

    Article  Google Scholar 

  • Ehlenfeldt MK, and RE Hanneman Jr. 1988. The transfer of the synaptic gene (sy-2) from 1EBNSolanum commersonii Dun. to 2EBN germplasm. Euphytica 37:181–187.

    Article  Google Scholar 

  • Ferro DN, and G Boiteau. 1993. Management of insect pests.In: RC Rowe (ed) Potato Health Management. APS, St. Paul, MN. pp. 103–116.

    Google Scholar 

  • Fry WE, and SB Goodwin. 1997. Re-emergence of potato and tomato late blight in the United States. Plant Dis 81:1349–1357.

    Article  Google Scholar 

  • Fry WE, SB Goodwin, AT Dyer, JM Matuszak, A Drenth, PW Tooley, LS Sijkowskii, YJ Koh, BA Cohen, LJ Spielman, KL Deahl, DA Inglis, and KP Sanlan. 1993. Historical and recent migrations ofPhytophthora infestans: Chronology, pathways and implications. Plant Dis 77:653–661.

    Article  Google Scholar 

  • Goodwin SB, BA Cohen, and WE Fry. 1994. Panglobal distribution of a single clonal lineage of the Irish potato famine fungus.Proc Nat Acad Sci USA 91:11591–11595.

    Article  PubMed  CAS  Google Scholar 

  • Guenthner JF, KC Michael, and P Nolte. 2001. The economic impact of potato late blight on US growers. Potato Res 44:121–125.

    Article  Google Scholar 

  • Hamm PB, BA Fry, and J Jaeger. 1994. Occurrence and frequency of metalaxyl insensitivity and mating types ofPhytophthora infestans in the Columbia basin of Oregon and Washington. Phytopathology. 84:1123 (abstr.).

    Google Scholar 

  • Hawkes JG. 1994. Origins of cultivated potatoes and species relationships.In: JE Bradshaw, GR Mackay (eds), Potato Genetics. CAB International, Cambridge. pp. 3–42.

    Google Scholar 

  • Helgeson JP, JD Pohlman, S Austin, GT Haberlach, SM Wielgus, D Ronis, L Zambolim, P Tooley, JM McGrath, RV James, and WR Stevenson. 1998. Somatic hydrids betweenSolanum bulbocastanum and potato: a new source of resistance to late blight. Theor Appl Genet 96:738–742.

    Article  Google Scholar 

  • Hermsen JGT. 1994. Introgression of genes from wild species, including molecular and cellular approaches.In: JE Bradshaw, GR Mackay (eds), Potato Genetics. CAB International, Cambridge. pp. 515–538.

    Google Scholar 

  • Inglis, DA, DA Legard, DE Fry, and PB Hamm. 1996. Relative resistance of potato clones response to new and old populations ofPhytophthora infestans. Plant Dis 80:575–578.

    Article  Google Scholar 

  • Kennedy GG, and NM French. 1994. Monitoring resistance in Colorado potato beetle population.In: G.W. Zehnder, ML Powelson, RK Jansson, KV Raman (eds), Advances in Potato Pest Biology and Management. APS St. Paul, MN. pp. 278–293.

    Google Scholar 

  • Kuhl JC, RE Hanneman Jr., and MJ Havey. 2001. Characterization and map** ofRpil, a late-blight resistance locus from diploid (1EBN) MexicanSolanum pinnatisectum. Mol Genet Genomics 265:977–985.

    Article  PubMed  CAS  Google Scholar 

  • Lambert DH, and AI Currier. 1997. Differences in tuber rot development for North American clones ofPhytophthora infestans. Am Potato J 75:39–43.

    Article  Google Scholar 

  • Lees AK, MJ De Maine, MJ Nicolson, and JE Bradshaw. 2000. Long-day-adaptedSolanum phureja as a source of resistance to blackleg caused byErwinia carotovora subsp.atroseptica. Potato Res 43:279–285.

    Article  Google Scholar 

  • Malcolmson, J.F., and W. Black. 1966. New R genes inSolanum demissum Lindl. and their complementary races ofPhytophthora infestans (Mont.) de Bary. Euphytica 15:199–203.

    Article  Google Scholar 

  • McLeod DGR, and JH Tolman. 1987. Evaluation of losses in potatoes.In: G. Boiteau, RP Singh, R.H. Parry (eds), Potato Pest Management in Canada, Proc. Symp. Improving Potato Pest Prot. 27–29 January, Fredericton, NB. pp. 363–373.

    Google Scholar 

  • Menke U, L Schilde-Rentschler, B Ruoss, C Zanke, V Hemleben, and H Ninnemann 1996. Somatic hybrids between the cultivated potatoSolanum tuberosum L. and the 1EBN wild speciesSolanum pinnatisectum Dun.: morphological and molecular characterization. Theor Appl Genet 92:617–626.

    Article  Google Scholar 

  • Murashige T, and F Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Niederhauser JS. 1993. The role of the potato in the conquest of hunger.In: JF Guenthner (ed), Past, Present and Future Uses of Potatoes - Proc. of the Symp. Potato Assoc. of America Annual Meeting, College of Agriculture MS 164, University of Idaho, Moscow. pp. 35.

    Google Scholar 

  • Niederhauser JS. 1999.Pkytophthora infestans the Mexican connection.In: JA Lucas (ed) Phytophthora. Symp. of the British Mycol. Soc. Trinity College, Dublin, 1998. Cambridge Univ. Press, Cambridge. pp. 25–45.

    Google Scholar 

  • Perombelon MCM, and A Kelman. 1980. Ecology of the soft rotErwinias. Ann Rev Phytopathol 18:361–387.

    Article  Google Scholar 

  • Peters RD, HW Platt, R Hall, and M Medina. 1999. Variation in aggressiveness of Canadian isolates ofPhytophthora infestans as indicated by their relative abilities to cause potato tuber rot. Plant Dis 83:652–661.

    Article  Google Scholar 

  • Platt HW 1999. Response of solanaceous cultivated plants and weed species to inoculation with Al or A2 mating type strainsof Phytophthora infestans. Can J Plant Pathol 21:301–307.

    Article  Google Scholar 

  • Platt HW, and R Reddin. 1994a. Potato cultivar and accession responses to late blight, early blight, and grey mould. Ann Appl Biol 124 (suppl.): 118–119.

    Google Scholar 

  • Platt HW, and R Reddin. 1994b. Potato cultivar and early accession responses to late blight. Ann Appl Biol 124 (suppl.): 120–121.

    Google Scholar 

  • Rivera-Pena A. 1990a. Wild tuber-bearing speciesof Solanum and incidence ofPhytophthora infestans (Mont.) de Bary on the western. slopes of the volcano Nevado de Toluca. 3. Physiological racesof Phytophthora infestans. Potato Res 33:349–355.

    Article  Google Scholar 

  • Rivera-Pena A. 1990b. Wild tuber-bearing speciesof Solanum and incidence ofPhytophthora infestans (Mont.) de Bary on the western slopes of the volcano Nevado de Toluca. 5. Type of resistanceto P. infestans. Potato Res 33:479–486.

    Article  Google Scholar 

  • Ross H. 1986. Potato breeding-Problems and perspectives. Adv. Plant Breed. Suppl. 13. Verlag, Paul Parey, Berlin. p. 132.

    Google Scholar 

  • SAS Institute Inc. 1989. SAS/STAT user’guide, Version 6. SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Singsit C, and RE Hanneman. 1991. Rescuing abortive inter-EBN potato hybrids through double pollination and embryo culture. Plant Cell Rep 9:475–479.

    Article  Google Scholar 

  • Spooner DM, and RJ Hijmans. 2001. Potato systematics and gerplasm collecting, 1989–2000. [Erratum: 78(5): 395.]. Am J Potato Res 78:237–268.

    Google Scholar 

  • Stemeroff M, and JA George. 1983. The benefits and costs of controlling destructive insects on onions, apples and potatoes in Canada, 1960–1980. Entomological Society of Canada, Ottawa, Ontario.

    Google Scholar 

  • Stevenson WR. 1993. Management of early blight and late blight.In: RC Rowe (ed) Potato Health Management. APS, St. Paul, MN. pp. 141–147.

    Google Scholar 

  • Thieme R, U Darsow, T Gavrilenko, D Dorokhov, and H Tiemann. 1997. Production of somatic hybrids betweenS. tuberosum L. and late blight resistant Mexican wild potato species.Euphytica 97:189–200.

    Article  Google Scholar 

  • Tingey WM, and GC Yencho. 1994. Insect resistance in potato: A decade of progress.In: GW Zehnder, ML Powelson, RK Jansson, KV Raman (eds) Advances in Potato Pest Biology and Management. APS, St. Paul, MN. pp. 405–425.

    Google Scholar 

  • Van Soest LJM, B Schober, and MF Tazelaar. 1984. Resistance toPhytophthora infestans in tuber-bearing speciesof Solanum and its geographical distribution. Potato Res 27: 393–411.

    Article  Google Scholar 

  • Vidaver AK. 1967. Synthetic and complex media for rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Appl Microbiol 15:1523–1524.

    PubMed  CAS  Google Scholar 

  • Watanabe K. 1991. Bottlenecks in germplasm enhancement and application of the biotechnology.In: Proc. Plant Conf. on the Application of Biotechnology to Germplasm Enhancement of Potatoes. International Potato Center (CIP), Lima, Peru. pp. 135–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Kawchuk, L.M., Lynch, D.R. et al. Identification of late blight, Colorado potato beetle, and blackleg resistance in three Mexican and two South American wild 2x (1EBN)Solanum species. Am. J. Pot Res 80, 9–19 (2003). https://doi.org/10.1007/BF02854552

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02854552

Additional Key Words

Navigation