Log in

Element ratios and aquatic food webs

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Organic matter is the result of concentrating a few non-metals that are relatively rare in the earth’s crust. Most of these essential elements are in a rough proportionality within phylogenetic grou**s. Life is thus working against a concentration gradient to extract or accumulate these elements, and this metabolic work is accomplished in interrelated and often subtle ways for many other elements. The physiological requirement to sustain these elemental ratios (commonly discussed in terms of the N∶P ratios, but also C∶N, C∶P, and Si∶N ratios) constrains organization at the cellular, organism, and community level. Humans, as geochemical engineers, significantly influence the spatial and temporal distribution of elements and, consequently, their ratios. Examples of these influences include the changing dissolved Si: nitrate and the dissolved nitrate: phosphate atomic ratios of water entering coastal waters in many areas of the world. Human society may find that some desirable or dependent ecosystem interactions are compromised, rather than enhanced, as we alter these elemental ratios. Human-modulated changes in nutrient ratios that cause an apparent increase in harmful algal blooms may compromise the diatom-zooplankton-fish food web. It will be useful to improve our understanding of aquatic ecosystems and for management purposes if the assiduous attention on one element (e.g., N or P) was expanded to include the realities of these mutual interdependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, J. R. D., J. Slinn, T. M. Shammon, R. G. Hartnoll, andS. J. Hawkins. 1998. Evidence for eutrophication of the Irish Sea over four decades.Limnology and Oceanography 43:1970–1974.

    CAS  Google Scholar 

  • Anderson, T. 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Springer-Verlag, New York.

    Google Scholar 

  • Chauvaud, L., R. Jean, O. Ragueneau, andG. Thouzeau. 2000. Long-term variation in the bay of Brest ecosystem: Benthicpelagic coupling revisited.Marine Ecology Progress Series 200:35–48.

    Article  CAS  Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–353.

    Article  CAS  Google Scholar 

  • Conley, D. J., S. S. Kilham, andE. Theriot. 1989. Differences in silica content between marine and freshwater diatoms.Limnology and Oceanography 34:205–213.

    CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 2000. Dissolved silicate dynamics of the Rhode River watershed and estuary.Estuaries 23:188–196.

    Article  CAS  Google Scholar 

  • Dayton, P. K. andE. Sala. 2001. Natural history: The sense of wonder, creativity and progress in ecology.Scientia Marina 65:199–206.

    Google Scholar 

  • del Almo, Y., B. Quéguiner, P. Tréguer, H. Breton, andL. Lampert. 1997. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France).Marine Ecology Progress Series 161:225–237

    Article  Google Scholar 

  • Durbin, A. G., S. W. Nixon, andC. A. Oviatt. 1979. Effects of the spawning of the alewife,Alosa pseudoharrengus, on freshwater ecosystems.Ecology 60:8–17.

    Article  Google Scholar 

  • Egge, J. K. andD. L. Aksnes. 1992. Silicate as regulating nutrient in phytoplankton competition.Marine Ecology Progress Series 83:281–289.

    Article  CAS  Google Scholar 

  • Egge, J. K., andA. Jacobsen. 1997. Influence of silicate on particulate carbon production in phytoplankton.Marine Ecology Progress Series 147:219–230.

    Article  Google Scholar 

  • Egge, J. K. andB. R. Heimdal. 1994. Blooms of phytoplankton includingEmiliania huxleyi (Haptophyta). Effects of nutrient supply in different N∶P ratios.Sarsia 79:333–348.

    Google Scholar 

  • Elser, J. J., D. R. Dobberfuhl, N. A. Mackay, andJ. H. Schampel. 1996. Organism size, life history, and N∶P stoichiometry.BioScience 46:674–684.

    Article  Google Scholar 

  • Elser, J. J., M. M. Elser, N. A. Mackay, andS. R. Carpenter. 1988. Zooplankton-mediated transitions between N and P limited algal growth.Limnology and Oceanography 33:1–14.

    CAS  Google Scholar 

  • Finney, B. P., I. Gregory-Eaves, M. S. V. Douglas, andJ. P. Smol. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years.Nature 416:729–733.

    Article  CAS  Google Scholar 

  • Fisher, T. R., L. W. Hardin, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine Coastal and Shelf Science 27:61–93.

    Article  CAS  Google Scholar 

  • Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: Approaches to measurements, community and species growth rate.Journal of Plankton Research 12:1117–1151.

    Article  Google Scholar 

  • Goldman, J. C. 1980. Physiological processes, nutrient availability and the concept of relative growth rate in marine phytoplankton ecology, p. 179–194.In P. Falkowski (ed.), Primary Production in the Sea. Plenum, New York.

    Google Scholar 

  • Guildford, S. J. andR. E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationships?Limnology and Oceanography 45:1213–1223.

    CAS  Google Scholar 

  • Guillard, R. R. L., P. Kilham, andT. A. Jackson. 1973. Kinetics of silicon-limited growth in the marine diatomThalassiosira pseudonana Hasle and Heimdal (=Cyclotella nana Hustedt).Journal of Phycology 9:233–237.

    CAS  Google Scholar 

  • Helfield, J. M. andR. J. Naiman. 2001. Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity.Ecology 82:2403–2409.

    Google Scholar 

  • Howarth, R., W. G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.

    Article  CAS  Google Scholar 

  • Humborg, C., D. Conley, L. Rahm, F. Wulff, A. Cosiasu, andV. Ittekkot. 2000. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments.Ambio 29:45–50.

    Article  Google Scholar 

  • Jacobsen, A., J. K. Egge, andB. Heimdal. 1995. Effects of increased concentration of nitrate and phosphate during a spring-bloom experiment in mesocosm.Journal of Experimental and Marine Biology and Ecology 187:239–251.

    Article  CAS  Google Scholar 

  • Justić, D., N. N. Rabalais, andR. E. Turner. 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication.Marine Pollution Bulletin 30:41–66.

    Article  Google Scholar 

  • Justić, D., N. N. Rabalais, R. E. Turner, andQ. Dortch. 1995b. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences.Estuarine and Coastal Shelf Science 40:339–356.

    Article  Google Scholar 

  • Kaiser, J. 2001. The other global pollutant: Nitrogen proves tough to curb.Science 294:1268–1269.

    Article  CAS  Google Scholar 

  • Karl, D. M. 1976. A sea of change: Biochemical variability in the north Pacific subtropical gyre.Ecosystems 2:181–214.

    Article  Google Scholar 

  • Keller, A. A., P. H. Doering, S. P. Kelly, andB. K. Sullivan. 1990. Growth of juvenile Atlantic menhaden,Brevoortias tyrannus (Pisces: Clupeidae) in MERL mesocosms: Effects of eutrophication.Limnology and Oceanography 35:109–122.

    CAS  Google Scholar 

  • Krokhin, E. M. 1975. Transport of nutrients by slamon migrating from the sea into lakes, p. 153–156.In A. D. Hasler (ed.), Coupling of Land and Water Systems. Springer-Verlag, New York.

    Google Scholar 

  • Kuuppo, P., R. Autio, H. Kuosa, O. Seälä, andD. S. Tanskanen. 1998. Nitrogen, silicate and zooplankton control of the planktonic food-web in spring.Estuarine and Coastal Shelf Science 46:65–75.

    Article  CAS  Google Scholar 

  • Main, T. M., D. R. Dobberfuhl, andJ. J. Elser. 1997. N∶P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis.Limnology and Oceanography 42:1474–1478.

    Article  CAS  Google Scholar 

  • Markert, B. F. 1998. Distribution and biogeochemistry of inorganic chemicals in the environment, p. 165–222.In G. Schuurmann and B. Markert (ed.), Ecotoxicology. Wiley and Sons, Inc., New York.

    Google Scholar 

  • Markert, B. F. (ed.). 1994. The biological system of the elements (BSE) for terrestrial plants (Glycophytes).The Science of the Total Environment 155:211–228.

    Google Scholar 

  • Morowtiz, H. J. 1968. Energy Flow in Biology. Academic Press, New York.

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of Limnological Society of South Africa 12:43–71.

    CAS  Google Scholar 

  • Officer, C. B. andJ. H. Ryther. 1980. The possible importance of silicon in marine eutrophication.Marine Ecology Progresse Series 3:83–91.

    Article  CAS  Google Scholar 

  • Paasche, E. 1973. The influence of cell size on growth rate, silica content, and some other properties of four marine diatoms species.Norwegian Journal of Botany 20:197–204.

    Google Scholar 

  • Plath, K. andM. Boersma 2001. Mineral limitation of zooplankton: Stoichiometric constraints and optimal foraging.Ecology 82:1260–1269.

    Google Scholar 

  • Pomeroy, L. R. 2001. Caught in the food web: Complexity made simples?Scientia Marina 65:31–40.

    Article  Google Scholar 

  • Rahm, L., D. Conley, P. Sandén, F. Wulff, andP. Stålnacke. 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi/N ratios.Marine Ecology Progress Series 130:221–228.

    Article  CAS  Google Scholar 

  • Redfield, A. C. 1934. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton, James Johnstone Memorial Volume. The University of Liverpool Press, Liverpool, U.K.

    Google Scholar 

  • Redfield, A. C. 1958. The biological control of chemical factors in the environment.American Scientist 46:205–222.

    CAS  Google Scholar 

  • Redfield, A. C. circa 1973. Alfred C. Redfield, Naturalist 1890–1983: His scientific career, from interviews by E. R. Marsh. Copy from data Library and Archives, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum, andF. A. Richards. 1963. The influence of organisms on the composition of seawater, p. 26–77.In M. N. Hill (ed.), The Sea, Volume 2. Interscience Publishers, John Wiley, New York.

    Google Scholar 

  • Richards, F. A. 1958. Dissolved silicate and related properties of some western North Atlantic and Caribbean waters.Journal of Marine Research 17:449–465.

    CAS  Google Scholar 

  • Scheffer, M. 1990. Multiplicity of stable states in freshwater systems.Hydrobiologia 200/201:475–486.

    Article  Google Scholar 

  • Siever, R. 1992. The silica cycle in the Precambrian.Geochima et Cosmochimica Acta 56:3265–3272.

    Article  CAS  Google Scholar 

  • Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40.In E. Granéli, B. Sundstrom, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier Science Publishers, New York.

    Google Scholar 

  • Sterner, R. W.. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: Zooplankton and the algal competitive arena.American Naturalist 136:209–229.

    Article  Google Scholar 

  • Sterner, R. W. andN. B. George. 2000. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes.Ecology 81:127–140.

    Article  Google Scholar 

  • Svensen, C., J. K. Egge, andJ. E. Stiansen. 2001. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study.Marine Ecology Progress Series 217:67–80.

    Article  Google Scholar 

  • Tilman, D., J. Fargione, J. B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, andD. Swackhamer. 2001. Forecasting agriculturally driven global environmental change.Science 292:281–284.

    Article  CAS  Google Scholar 

  • Tilman, D. andS. S. Kilham. 1976. Phosphate and silicate growth and uptake kinetics of the diatomsAsterionella formosa andCyclotella meneghiniana in batch and semicontinous culture.Journal of Phycology 12:375–383.

    CAS  Google Scholar 

  • Tréguer, P. andP. Pondaven. 2000. Silica control of carbon dioxide.Nature 406:357–359.

    Article  Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justić, R. Shaw, andJ. Cope. 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs.Proceedings of the National Academy of Sciences 95:13048–13051.

    Article  CAS  Google Scholar 

  • Turner, R. E., N. N. Rabalais, D. Justic, and Q. Dortch. 2002. Global patterns of dissolved N, P and Si in large rivers.Biogeochemistry.

  • Verity, P. G. andV. Smetacek. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems.Marine Ecology Progress Series 130:277–293.

    Article  Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R.E. Element ratios and aquatic food webs. Estuaries 25, 694–703 (2002). https://doi.org/10.1007/BF02804900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804900

Keywords

Navigation