Log in

Competitive inhibition of hydrogen peroxide-induced aggregation of calf platelets by prostaglandin H2/thromboxane A2 receptor ligands

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2)-induced aggregation of calf platelets and its modification by agents with specific properties were characterized employing a spectrophotometric assay. An Arrhenius activation energy of 20 ± 1 kcal/mol was found in the temperature range of 25‡-36‡C. Rate inhibition occurred on either side of this temperature range, and under anaerobic conditions. Exogenous Ca2+ ions were not required but Ca2+ ions, at 1 mM-concentration, optimally increased rates and extent of aggregation at suboptimal H2O2 concentrations but only extent of aggregation at optimal H2O2 concentrations. Ba2+, Sr2+, Cd2+, Mn2+ and Ni2+ ions (1 mM) and Zn2+, Pb2+ and Hg2+ ions (10 mM) were inhibitory. The cyclo-oxygenase inhibitor, indomethacin (10-30 mM) exerted only mild inhibition by a competitive mechanism. Another cyclo-oxygenase inhibitor, aspirin, functioned to increase aggregation. Ligands acting directly at the prostaglandin H2/thromboxane A, receptor (5Z. 9, 11, 13E, 15(S) 15-hydroxy 9(11) epoxy methano prosta 5, 13-dien-1-oic acid, pinane thromboxane A2, arachidonic acid, eicosapentaenoic acid, and N-ethylmaleimide) functioned as competitive inhibitors. Another platelet-activating sulphydryl reagent, thimerosal, also inhibited competitively while the protein kinase C inhibitor, sphingosine, and the protein kinase C modulator, Zn2+ ions, inhibited by different mechanisms. The results indicate direct action of H2O2 at the prostaglandin H2/thromboxane A2 receptor, possibly its sulphydryls, to activate the protein kinase C pathway, independently of cyclo-oxygenase products. The results underscored the power of the kinetic approach for investigating mechanisms of platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PLC:

Phospholipase C

(Ca2+)i:

intracellular free Ca2+ ion concentration

IP3 :

inositol 1

4:

5-triphosphate

DAG:

1

2-diacylglycerol:

PKC

protein kinase C:

PLA2

phospholipase A2 :

AA

arachidonic acid:

COx

cyclo-oxygenase:

PGH2

prostaglandin H2 :

TxA2

thromboxane A2 :

MDA

malondialdehyde:

U46619

5Z:

9

11:

13E

15(S)15-hydrox 9(11) epoxy methano prosta 5:

13-dien-1-oicacid

PTxA2 :

pinane thromboxane A2

PMA:

4s-phorobol 12-myristate 13-acetate

EPA:

5

8:

11

14:

17-eicosapentaenoic acid

NEM:

N-ethylmaleimide

References

  • Burke S E, Lefer A M, Nicolaou K C and Smith J B 1983 Responsiveness of platelets and coronary arteries from different species to synthetic thromboxane and prostaglandin endoperoxide analogues;Br. J. Pharmacol. 78 287–292

    PubMed  CAS  Google Scholar 

  • Chetty N, Vicker J D, Kinlough-Rathbone R L, Packham M A and Mustard J F 1989 Eicosapentaenoic acid interfere with U-46619-stimulated formation of inositol phosphates in washed rabbit platelets;Thromb. Haemostas. 62 1116–1120

    CAS  Google Scholar 

  • di Minno G, Bertele V, Bianchi L, Barbieri B, Cerletti C, Dejana E, de Gaetano G and Silver M J 1981 Effect of an epoxymethan stable analogue of prostaglandin endoperoxide (U-46619) on human platelets;Thromb. Haemostas. 45 103–106

    CAS  Google Scholar 

  • Dorn II G W 1990 Cyclic oxidation-reduction reactions regulate thromboxane A2/prostaglandin H2 receptor number and affinity in human platelet membranes;J. Biol. Chem. 265 4240–4246

    PubMed  CAS  Google Scholar 

  • Hanasaki K and Arita H 1988 Characterization of thromboxane A2/prostaglandin H2 (TxA2/PGH2) receptors of rat platelets and their interaction with TxA2/PGH2 receptor antagonists;Biochem. Pharmacol. 37 3923–3929

    Article  PubMed  CAS  Google Scholar 

  • Hannun Y A and Bell R M 1989 Function of sphingolipids and sphingolipid breakdown products in cellular regulation;Science 243 500–507

    Article  PubMed  CAS  Google Scholar 

  • Hannun Y A, Greenberg C S and Bell R M 1987 Sphingosine inhibition of agonist-induced secretion and activation of human platelets implies that protein kinase C is a necessary and common event of the signal transduction;J. Biol. Chem. 262 13620–13626

    PubMed  CAS  Google Scholar 

  • Hecker M, Brune B, Decker K and Ullrich V 1989 The sulphydryl reagent thimerosal elicits human platelet aggregation by mobilization of intracellular calcium and secondary prostaglandin endoperoxide formation;Biochem. Biophys. Res. Commun. 159 961–968

    Article  PubMed  CAS  Google Scholar 

  • Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S and Narumiya S 1991 Cloning and expression of cDNA for human thromboxane A2 receptor;Nature (London)349 6170–620

    Article  Google Scholar 

  • Hornberger W and Patscheke H 1989 Hydrogen peroxide and methyl mercury are primary stimuli of eicosanoid release in human platelets;J. Clin. Chem. Clin. Biochem. 27 567–575

    PubMed  CAS  Google Scholar 

  • Huang E M and Detwiler T C 1982 Arachidonate is an antagonist of platelet activation by the endoperoxide analogue U-46619;Biochim. Biophys. Acta 715 246–249

    PubMed  CAS  Google Scholar 

  • Jamaluddin M 1991 New perspectives in blood platelet aggregation;Curr. Sci. 61 526–533

    Google Scholar 

  • Jamaluddin M and Krishnan L K 1987a A spectrophotometric method for following initial rate kinetics of blood platelet aggregation;J. Biochem. Biophys. Methods 14 191–200

    Article  PubMed  CAS  Google Scholar 

  • Jamaluddin M and Krishnan L K 1987b A rate equation for blood platelet aggregation;J. Theor. Biol. 129 257–261

    Article  PubMed  CAS  Google Scholar 

  • Jamaluddin M and Krishnan L K 1990 Adenosine and ATP: mutually exclusive modifiers of ADP-induced aggregation of calf platelets;J. Biosci. 15 389–396

    Article  CAS  Google Scholar 

  • Jamaluddin M, Krishnan L K and Thomas A 1988 Ajoene inhibition of platelet aggregation: possible mediation by a haemoprotein;Biochem. Biophys. Res. Commun. 153 479–486

    Article  PubMed  CAS  Google Scholar 

  • Khan W A, Doborowsky R, El Touny S and Hannun Y A 1990 Protein kinase C and platelet inhibition by D-erythrosphingosine, Comarison with N, W-dimethyl sphingosine and commercial preparation;Biochem. Biophys. Res. Commun. 172 683–691

    Article  PubMed  CAS  Google Scholar 

  • Kroll M FI and Schafer AI1989 Biochemical mechanism of platelet activation;Blood 74 1181–1195

    PubMed  CAS  Google Scholar 

  • Lapetina E G, Chandrabose K A and Cuatrecasas P 1978 Ionophore A23187- and thrombin-induced platelet aggregation: independence from cyclo-oxygenase products;Proc. Natl. Acad. Sci. USA 75 812–822

    Article  Google Scholar 

  • Leone G, Schintu S, Porfiri R, Randolfi R and Bizzi B 1979 Platelet aggregation by thimerosal: Role of ADP and SH groups;Haemostasis 8 390–399

    PubMed  CAS  Google Scholar 

  • Luksiewicz H, Peng M L, Morinelli T A, Eckardt A, Kirby E and Niewiarowski S 1989 Separation of different receptor-mediated effects of prostaglandins H2 analogue (U-46619) on human platelets by means of human granulocytic elastase and chymotripsin;Biochem. Pharmacol. 38 3213–3217

    Article  Google Scholar 

  • Mamsten C 1975 A stable endoperoxide analogue activates platelets similarly to the natural endoperoxides;Life Sci. 18 169–176

    Article  Google Scholar 

  • McClay D R, Wessel G M and Marchase R B 1981 Intercellular recognition: Quantitation of initial binding events;Proc. Nat!. Acad. Sci. USA 78 4975–4979

    Article  PubMed  CAS  Google Scholar 

  • Morinelli T A, Niewiarowski S, Daniel J L and Smith J B 1987 Receptor-mediated effects of a PGH2 analog (U-46619) on human platelets;Am J. Physiol. 253 H1035-H1043

    PubMed  CAS  Google Scholar 

  • Nakano T, Hanasaki K and Arita H 1989 Role of protein kinase C in U-46619-induced shape-change, aggregation and secretion;Thromh. Res. 56 299–306

    Article  CAS  Google Scholar 

  • Nicolaou K C, Magolda R L, Smith J B, Aharony D, Smith E F III and Lefer A M 1979 Synthesis and biological properties of pinane thromboxane A2, a selective inhibitor of coronary artery constriction, platelet aggregation and thromboxane formation;Proc. Natl. Acad. Sci. USA 76 2566–2570

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y 1988 The molecular heterogeneity of protein kinase C and its implication for cellular regulation;Nature (London) 334 661–665

    Article  CAS  Google Scholar 

  • Sato T, Hazhizume T, Nakao K, Akiba S and Fujii T 1989 Platelet desensitization by arachidonic acid is associated with the suppression of endoperoxide/thromboxane A2 binding;Biochem. Biophys. Acta 992 168–173

    PubMed  CAS  Google Scholar 

  • Seiss W 1989 Molecular mechanisms of platelet activation;Physiol Rev. 69 58–178

    Google Scholar 

  • Seiss W, Boehlig B, Weber P C and Lapetina E G 1985 Prostaglandin endoperoxide analogues stimulate phospholipase C and protein phosphorylation during platelet shape-change;Blood 65 1141–1148

    Google Scholar 

  • Sinko Z and Caen J P 1967 Platelet aggregation in mammalians (human, rat, rabbit, guinea pig, horse, dog). A comparative study;Thromh. Diath. Haemorrh. 17 99–111

    Google Scholar 

  • Stuart M J Murphy S and Oski F A 1975 A simple non-radioisotope technique for the determination of platelet life-span;New Engl. J. Med. 292 1310–1313

    Article  PubMed  CAS  Google Scholar 

  • Swann P G, Parent C A, Croset M, Fonlupt P P, Lagarde M, Venton D L and Le Brenton G C 1990 Enrichment of platelet phospholipids with eicosapentaenoic acid and docosa hexa enoic acid inhibits thromboxane A2/prostaglandin H2, receptor function;J. Biol. Chem. 265 21692–21697

    PubMed  CAS  Google Scholar 

  • Takahara K, Murray R, Fitz Gerald G, Garnet A and Fitzgerald DJ 1990 The response to thromboxane A2 analogues in human platelets. Discrimination of two binding sites linked to distinct effector systems;J. Biol. Chem. 265 6836–6844

    PubMed  CAS  Google Scholar 

  • White J G and Krumbwiede M 1973 Influence of cytochalasin B on the shape-change induced in platelets by cold;Blood 41 823–832

    PubMed  CAS  Google Scholar 

  • Yamada K. Shuko K and Nakamizo N 1983Thromb. Res. 29 197–206

    Article  PubMed  CAS  Google Scholar 

  • Zatta A and Prosduocimi M 1989 Platelet activation induced by a stable analogue of endoperoxides (U-46619);Thromb. Haemostas. 61 328–329

    CAS  Google Scholar 

  • Zenian A 1981 Attachment ofLeishmania tropica to macrophages is inhibited by both low temperature and metabolic inhibitors;Exp. Parasitol. 51 175–187

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamalucdin, M., Thomas, A. Competitive inhibition of hydrogen peroxide-induced aggregation of calf platelets by prostaglandin H2/thromboxane A2 receptor ligands. J Biosci 17, 129–140 (1992). https://doi.org/10.1007/BF02703498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703498

Keywords

Navigation