Log in

Using hamiltonian formalism methods in the theory of nonlinear interaction of waves in a rotating fluid

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We solve a problem of the Hamiltonian description of Kelvin and Poincaré waves in a layer of uniformly rotating fluid. The transformation to normal canonical variables of the problem is found. The matrix coefficients of nonlinear interactions are obtained for decay instability of Kelvin waves in the presence of a Poincaré wave and for stabilization of this instability due to phase mismatch of the interacting waves caused by cubic nonlinearity of the medium. The growth rate of this instability is calculated, and the steady-state level of excited waves is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics of the Ocean. Vols. 1, 2 [in Russian], Nauka, Moscow (1978), 455 pp.

  2. P. Le Blome and L. A. Mysak,Waves in the Ocean. Vols. 1,2 [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  3. E. E. Efimov et al.Waves in Boundary Regions of the Ocean [in Russian], Gidrometeoizdat, Leningrad (1985), 280 pp.

    Google Scholar 

  4. W. Thomson,Proc. R. Soc. Edinburgh,10, 92 (1897).

    Google Scholar 

  5. V. E. Zakharov,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 4, 431 (1974).

    Google Scholar 

  6. A. G. Voronovich,Izv. Acad. Nauk SSSR. Fiz. Atm. Okeana,15, 82 (1979).

    MathSciNet  Google Scholar 

  7. S. B. Leble,Waveguided Propagation of Nonlinear Waves in Stratified Media [in Russian], Leningrad State Univ. Press, Leningrad (1988), 198 pp.

    Google Scholar 

  8. R. L. Saliger and G. B. Withem “Variational Principles for rotating medium,” in:Mechanika, No. 5, 99. (1969).

  9. T. R. Akylas and C. Katsis,Phys. Fluids,30, No. 2, 297 (1987).

    Article  MATH  ADS  Google Scholar 

  10. L. A. Ostrovsky,Okeanologiya,18, No. 2, 181 (1978).

    Google Scholar 

  11. A. A. Kurkin, “Studies of Nonlnear Wave Interaction in the Rotating Ocean by the Method of Hamiltonian Formalism”, Ph.D. Thesis, Nizhny Novgorod (1999), 112 pp.

  12. A. Yu. Mitropol'sky,Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971), 440 pp.

    Google Scholar 

  13. E. Ott and R. N. Sudan,Phys. Fluids. 13, No. 6, 1432 (1970).

    Article  ADS  Google Scholar 

  14. R. J. Smith,Fluid Mech.,52, 379 (1972).

    Article  MATH  ADS  Google Scholar 

  15. R. Grimshaw,Stud. Appl. Math.,73, 1 (1985).

    MATH  MathSciNet  Google Scholar 

  16. T. Maxworthy,J. Fluid Mech.,129, 365 (1983).

    Article  ADS  Google Scholar 

  17. D. P. Renouard, X. Zhang, and G. D'Hieres,J. Fluid Mech.,177, 381 (1987).

    Article  ADS  Google Scholar 

  18. E. A. Martinsen and J. E. Weber,Tellus,33, No. 4, 402 (1981).

    Article  ADS  Google Scholar 

  19. A. N. Lebedev,Okeanologiya,7, No. 1, 10 (1977).

    Google Scholar 

  20. A. J. clarke,J. Fluid Mech.,83, Pt. 2, 337 (1977).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. B. Keller,J. Phys. Oceanogr.,11, No. 2, 284 (1981).

    Article  ADS  Google Scholar 

  22. M. S. Howe and L. A. Mysak,J. Fluid Mech.,57, 111 (1973).

    Article  MATH  ADS  Google Scholar 

  23. R. E. Thomson,J. Fluid Mech.,42, 657 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Authors

Additional information

State Technical University, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 4, pp. 359–368. February 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkin, A.A. Using hamiltonian formalism methods in the theory of nonlinear interaction of waves in a rotating fluid. Radiophys Quantum Electron 42, 320–328 (1999). https://doi.org/10.1007/BF02677575

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677575

Keywords

Navigation