Log in

Bedeutung des HCO3-CO2-Puffersystems für die Homöostase des intrazellulären pH in SW620-Kolonkarzinomzellen

Influence of the HCO3-CO2-buffer-system on the homeostasis of intracellular pH in SW620 colonic carcinoma cells

  • Chirurgische Forschung
  • Published:
Acta chirurgica Austriaca Aims and scope Submit manuscript

Zusammenfassung

Hintergrund: Solide Tumoren weisen azidotische Regionen mit durchschnittlichen extrazellulären pH Werten (pHo) von 6,9 bis 7,0 (Normalgewebe: 7,4 bis 7,5) auf. In humanen SW620-Kolonkarzinomzellen konnten in einer früheren Arbeit ein Na/H-Austauscher sowie ein Na/HCO3-Kotransporter als Säureextrusoren nachgewiesen werden, ein Cl/HCO3-Austauscher wurde im Gegensatz zu anderen Tumorlinien nicht gefunden. Diese Studie untersucht die Auswirkungen unterschiedlicher extrazellulärer pH-Bedingungen auf die intrazelluläre pH-Regulation am Modell der SW620-Kolonkarzinomzellen, durch Variation des CO2-Partialdrucks und der HCO3-Konzentration der Inkubationslösungen.

Methodik: SW620-Zellen wurden in HEPES-gepufferter Lösung (pH = 7,4; 25 °C) mit dem pH-sensitiven Fluoreszenzfarbstoff BCECF beladen und pHi-Veränderungen mittels einer computergesteuerten Spektrofluorimetrieanlage aufgezeichnet. Durch Kombination von 5, 15, 25 und 35 mM HCO3 mit 2,5, 5 und 15 Vol.% CO2 (Rest-Vol.% O2) Begasung wurden 12 Versuchsanordnungen mit unterschiedlichem pHo (pHo = 6,30 bis 7,81) gebildet.

Ergebnisse: Der Ruhe-pHi in HEPES-Lösung betrug 7,52 ± 0,01 (n = 72). Nach Wechsel zu HCO3/CO2-Medium kam es zu einer Ansäuerung von 0,25 bis 0,77 pH-Einheiten. 5% CO2/5 mM HCO3 führte nach einer Ruheperiode von 15 min zu einer pHi-Verschiebung um ≥ 0,2 Einheiten in den sauren Bereich und 2,5% CO2/35 mM HCO3 zu einer pHi-Verschiebung um ≥ 0,2 Einheiten in den alkalischen Bereich gegenüber dem Standard-Ruhe-pHi (7,39 bei 5% CO2/25 mM HCO3). Bei 15% CO2/5 mM HCO3 (pHo = 6,26) konnte keine Rückregulation beobachtet werden.

Schlußfolgerungen: Die Ergebnisse im SW620-In-vitro-Modell zeigen, daß extrazelluläre Abweichungen von Standard-CO2- und-Bikarbonatbedingungen zu Störungen der intrazellulären pH-Homöostase führen. Das Ausmaß der intrazellulären Ansäuerung war von der CO2-Spannung abhängig, die H-Extrusionsraten wurden durch den extrazellulären pH bestimmt. Diese Resultate demonstrieren die prinzipielle Möglichkeit, eine selektive Beeinträchtigung der intrazellulären pH-Homöostase und damit der Zellfunktion von Tumorzellen durch Veränderung des extrazellulären pH zu erzielen.

Summary

Background: Extracellular pH (pHo) in malignant tumors often reaches levels below 7.0 (mean values 0.5 pH units lower compared to normal tissues). This study was designed to investigate regulation and maintainance of intracellular pH (pHi) of a human colonic carcinoma derived cell-line (SW620) under different extracellular pH conditions by modulating CO2-tensions and bicarbonate concentrations. Previously we characterized a Na/H exchanger and a Na/HCO3-cotransporter to account for acid extrusion in these cells, whereas no evidence of the presence of a Cl/HCO3 exchanger was found.

Methods: pHi changes of cells were recorded by spectrofluorimetric monitoring of the pH-sensitive, fluorescent dye BCECF. Dye loaded cells were incubated in air-equilibrated HEPES-buffered solution (pH = 7.4, 25 °C), then bathing solutions were switched to HCO3/CO2-buffered media to simulate different conditions. 12 groups were designed by matching bicarbonate concentrations of 5, 15, 25, and 35 mM with 2.5, 5, or 15% CO2 resulting in different pH (pHo = 6.30 to 7.81).

Results: Steady state pHi of SW620 cells in HEPES-buffered solution was 7.52 ± 0.01 (n = 72). When cells were exposed to HCO3/CO2-buffered solutions with different pHo they rapidly acidified by 0.25 to 0.77 pH units. After a period of 15 min 5% CO2/5 mM HCO3 led to a pHi-change of ≥ 0.2 pHi units towards acidic pHi and 2.5% CO2/35 mM HCO3 to a pHi-change of ≥ 0.2 units towards alkaline pHi, compared to standard resting pHi (7.39 at 5% CO2/25 mM HCO3). At 15% CO2/5 mM HCO3 (pHo = 6.26) no pHi-recovery was observed.

Conclusions: Deviations from standard extracellular CO2 and HCO3 concentrations provide a challenge to cellular homeostasis. Cytoplasmic acidification was dependent on CO2-tensions, H-extrusion rates were determined by extracellular pH (pHo). Manipulation of pHi-regulation in tumor cells by varying extracellular pH could lead to intracellular conditions which might affect cell-function and therefore contribute to anti-tumor strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bierman AJ, Cragoe EJ, de Laat SW, Moolenaar WH: Bicarbonate determines cytoplasmic pH and suppresses mitogen-induced alkalinization in fibroblastic cells. J Biol Chem 1988;263:15253–15256.

    CAS  PubMed  Google Scholar 

  2. Bischof G, Wenzl E, Weinlich M, Hamilton G, Feil W, Schiessel R: Intrazelluläre pH-Regulation in humanen SW-620-Kolonkarzinomzellen. Wien klin Wschr 1990;102/13:369–375.

    CAS  PubMed  Google Scholar 

  3. Boron WF, Boulpaep EL: Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3 transport. J Gen Physiol 1983;81:53–94.

    Article  CAS  PubMed  Google Scholar 

  4. Boyarsky G, Ganz MB, Sterzel RB, Boron WF: Intracellular pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3. Am J Physiol 1988;255:C844-C856.

    CAS  PubMed  Google Scholar 

  5. Boyarsky G, Ganz MB, Sterzel RB, Boron WF: Intracellular pH regulation in single glomerular mesangial cells. II. Na-dependent and -independent Cl/HCO3 exchanger. Am J Physiol 1988;255:C857-C869.

    CAS  PubMed  Google Scholar 

  6. Boyer MJ, Tannock IF: Regulation of intracellular pH in tumor cell lines:influence of microenvironmental conditions. Cancer Res 1992;52:4441–4447.

    CAS  PubMed  Google Scholar 

  7. Bravo R, Macdonald-Bravo H: Effect of pH on the induction of competence and progression to the S-phase in mouse fibroblasts. FEBS 1986;195:309–312.

    Article  CAS  Google Scholar 

  8. Dobrowsky E, Newell K, Tannock IF: The Potential of Lactate and Succinate to Kill Nutrient Deprived Tumor Cells by Intracellular Acidification. Int J Rad Onc Biol Phys 1991;20:275–279.

    Article  CAS  Google Scholar 

  9. Eagle H: The effect of environmental pH on the growth of normal and malignant cells. J Cell Physiol 1973;82:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gores GJ, Nieminen AL, Wray BE, Herman B, Lemasters JJ: Intracellular pH during "Chemical Hypoxia" in Cultured Rat Hepatocytes: protection by intracellular acidosis against the onset of cell death. J Clin Invest 1989;83:386–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grinstein S, Rothstein A: Mechanisms of regulation of the Na/H exchanger. J Membr Biol 1986;90:1–12.

    Article  CAS  PubMed  Google Scholar 

  12. Gullino PM, Grantham FH, Smith SH, Haggerty AC: Modifications of the acid-base status of the internal milieu of tumors. J Natl Cancer Inst 1965;34:857–869.

    CAS  PubMed  Google Scholar 

  13. Horvat B, Taheri S, Salihagic A: Tumor cell proliferation is abolished by inhibitors of Na/H and HCO3/Cl exchange. Eur J Cancer 1993;29A:132–137.

    Article  Google Scholar 

  14. Maidorn RP, Cragoe EJ, Tannock IF: Therapeutic potential of analogues of amiloride:inhibition of the regulation of intracellular pH as a possible mechanism of tumor selective therapy. Br J Cancer 1993:297–303.

  15. Margolis LB, Rozovskaja IA, Skulachev VP: Acidification of the interior of Ehrlich ascites tumor cells by nigericin inhibits DNA synthesis. FEB 1987;220:288–290.

    Article  CAS  Google Scholar 

  16. Moolenaar WH, Tertoolen LGJ, de Laat SW: Phorbol ester and diaclyglycerol mimic growth factors in raising cytoplasmic pH. Nature 1984;312:371–374.

    Article  CAS  PubMed  Google Scholar 

  17. Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW: Na/H exchange and cytoplasmatic pH in the action of growth factors in human fibroblasts. Nature 1983;304:645–648.

    Article  CAS  PubMed  Google Scholar 

  18. Newell KJ, Tannock IF: Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone. Cancer Res 1989;49:4477–4482.

    CAS  PubMed  Google Scholar 

  19. Newell K, Wood P, Stratford I, Tannock IF: Effect of agents which inhibit the regulation of intracellular pH on murine solid tumours. Br J Cancer 1992;66:311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nuccitelli R, Helple JM: Intracellular pH: its measurement, regulation and utilization in cellular functions. New York, Liss, 1982, pp 567–586.

    Google Scholar 

  21. Paradiso AM, Negulescu PA, Machen TE: Na-H and CL-OH (HCO3) exchange in gastric glands. Am J Physiol 1986;250:G524-G534.

    CAS  PubMed  Google Scholar 

  22. Pouysségur J, Franchi A, L’Allemain G, Paris S: Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett 1985;190:115–119.

    Article  PubMed  Google Scholar 

  23. Reinertsen KV, Tonessen TI, Jacobsen J, Sandvig K, Olsnes S: Role of chloride/bicarbonate antiport in the control of cytosolic pH. Cell line differences in activity and regulation of antiport. J Biol Chem 1988;263:11117–11125.

    CAS  PubMed  Google Scholar 

  24. Rink TJ, Tsien RY, Pozzan T: Cytoplasmic pH and free Mg in lymphocytes. J Cell Biol 1982;95:189–196.

    Article  CAS  PubMed  Google Scholar 

  25. Ritter JM, Doktor HS, Benjamin N: Paradoxical effect of bicarbonate on cytoplasmic pH. Lancet 1990;335:1243–1246.

    Article  CAS  PubMed  Google Scholar 

  26. Rotin D, Robinson B, Tannock IF: Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer Res 1986;46:2821–2826.

    CAS  PubMed  Google Scholar 

  27. Tannock IF, Rotin D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989;49:4373–4384.

    CAS  PubMed  Google Scholar 

  28. Taylor IW, Hodson PJ: Cell cycle regulation by environmental pH. J Cell Physiol 1984;121:517–525.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas JA, Buchsbaum RN, Zimniak A, Racker E: Intracellular pH measurement in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 1979;18:2210–2218.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas RC: Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol 1984;354:3–22.

    Article  Google Scholar 

  31. Thomas RC: Bicarbonate and pHi response. Nature 1989;337:601.

    Article  CAS  PubMed  Google Scholar 

  32. Townsley MC, Machen TE: Na-HCO3 cotransport in rabbit parietal cells. Am J Physiol 1989;257:G350-G356.

    CAS  PubMed  Google Scholar 

  33. Weinlich M, Wenzl E, Starlinger M, Schiessel R: Die Regulation des intrazellulären pH durch einen Na/H-Austauscher in humanen Lymphozyten. Wien klin Wschr 1989;101/II:380–385.

    CAS  PubMed  Google Scholar 

  34. Wenzl E, Sjaastad MD, Weintraub WH, Machen TE: Intracellular pH regulation in IEC-6 cells, a cryptlike intestinal cell line. Am J Physiol 1989;257:G732-G740.

    CAS  PubMed  Google Scholar 

  35. Wenzl E, Machen TE: Intracellular pH dependence of buffer capacity and anion exchange in the parietal cell. Am J Physiol 1989;257:G741-G747.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentini, E.P., Bischof, G., Hamilton, G. et al. Bedeutung des HCO3-CO2-Puffersystems für die Homöostase des intrazellulären pH in SW620-Kolonkarzinomzellen. Acta Chir Austriaca 26, 320–325 (1994). https://doi.org/10.1007/BF02620674

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620674

Schlüsselwörter

Key-words

Navigation