Log in

Effects of dietary n−3 and n−6 polyunsaturated fatty acids on macrophage phospholipid classes and subclasses

  • Articles
  • Published:
Lipids

Abstract

This study examined the effects of n−3 and n−6 polyunsaturated fatty acid alimentation on murine peritoneal macrophage phospholipids. Mice were fed complete diets supplemented with either corn oil predominantly containing 18∶2n−6, borage oil containing 18∶2n−6 and 18∶3n−6, fish/corn oil mixture containing 18∶2n−6, 20∶5n−3 and 22∶6n−3, or fish/borage oil mixture containing 18∶2n−6, 18∶3n−6, 20∶5n−3 and 22∶6n−3. After two weeks, the fatty acid levels of glycerophosphoserines (GPS), glycerophosphoinositols (GPI), sphingomyelin (SPH), and of the glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) phospholipid subclasses were determined. We found that mouse peritoneal macrophage GPC contain primarily 1-0-alkyl-2-acyl (range for the dietary groups, 24.6–30.5 mol %) and 1,2-diacyl (63.2–67.2 mol %), and that GPE contains 1-O-alk-1-enyl-2-acyl (40.9–47.4 mol. %) and 1,2-diacyl (44.2–51.2 mol %) subclasses. In general, fish oil feeding increased macrophage 20∶5n−3, 22∶5n−3 and 22∶6n−3 levels while simultaneously reducing 20∶4n−6 in GPS, GPI, GPE and GPC subclasses except for 1-O-alk-1′-enyl-2-acyl GPC. Administration of 18∶3n−6 rich diets (borage and fish/borage mixture) resulted in the accumulation of 20∶3n−6 (2-carbon elongation product of 18∶3n−6) in most phospholipids. In general, the novel combination of dietary 18∶3n−6 and n−3 PUFA produced the highest 20∶3n−6/20∶4n−6 phospholipid fatty acid ratios. This study demonstrates that marked differences in the responses of macrophage phospholipid classes and subclasses exist following dietary manipulation. The reduction of 20∶4n−6, while simultaneously increasing 30∶3n−6 and n−3 PUFA levels, may be important in relation to the putative beneficial effects of 20∶3n−6 and fish oil on macrophage eicosanoid and platelet activating factor (PAF) biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

8-Anilino:

1-naphthalenesulfonic acid ammonium salt

20∶4n−6:

arachidonic acid

20∶3n−6:

dihomogammalinolenic acid

22∶6n−3:

docosahexaenoic acid

22∶5n−3:

docosapentaenoic acid

20∶5n−3:

eiocosapentaenoic acid

FAME:

fatty acid methyl ester

18∶3n−6:

γlinolenic acid

GPC:

glycerophosphocholine

GPE:

glycerophosphoethanolamine

GPI:

glycerophosphoinositol

GPS:

glycerophosphoserine

HPLC:

high performance liquid chromatography

18∶2n−6:

linoleic acid

PAF:

platelet activating factor

PUFA:

polyunsaturated fatty acids

SPH:

sphingomyelin

TLC:

thin-layer chromatography

References

  1. Nathan, C.F., and Cohn, Z.A. (1985)Textbook of Rheumatology (Kelley, W.W., Harris, E.D., Ruddy, S., and Sledge, C.B., eds.), pp. 144–169, W.B. Sanders, Philadelphia.

    Google Scholar 

  2. Somers, S.D., Johnson, W.J., and Adams, D.O. (1986) inCancer Immunology: Innovative Approaches to Therapy (Herberman, R.B., ed.) pp. 69–122, Martinus Nijhoff, Boston.

    Google Scholar 

  3. Bonney, R.J., Opas, E.E., and Humes, J.L. (1985)Fed. Proc. 44, 2933–2936.

    PubMed  CAS  Google Scholar 

  4. Higgs, G.A., Moncada, S., and Vane, J.R. (1984)Ann. Clin. Res. 16, 287–299.

    PubMed  CAS  Google Scholar 

  5. Taffet, S.M., and Russell, S.W. (1980)J. Immunol. 126, 424–427.

    Google Scholar 

  6. Ford-Hutchinson, A.W. (1985)Fed. Proc. 4, 25–29.

    Google Scholar 

  7. Feuerstein, G., and Hallenbeck, J.M. (1987)FASEB J. 1, 186–192.

    PubMed  CAS  Google Scholar 

  8. Wey, H.E., Jakubowski, J.A., and Deykin, D. (1986)Biochim. Biophys. Acta 878, 380–386.

    PubMed  CAS  Google Scholar 

  9. Mahadevappa, V.G., and Holub, B.J. (1982)Biochim. Biophys. Acta 713, 73–79.

    PubMed  CAS  Google Scholar 

  10. Brown, M.L., Jakubowski, J.A., Leventis, L.L., and Deykin, D. (1987)Biochim. Biophys. Acta 921, 159–166.

    PubMed  CAS  Google Scholar 

  11. Mahadevappa, V.G., and Holub, B.J. (1987)J. Lipid Res. 28, 1275–1280.

    PubMed  CAS  Google Scholar 

  12. Sugiura, T., Nakajija, M., Sekiguchi, N., Nakagawa, Y., and Waku, K. (1983)Lipids 18, 125–129.

    CAS  Google Scholar 

  13. Holub, B.J., Celi, B., and Skeaff, C.M. (1988)Throm. Res. 50, 135–143.

    Article  CAS  Google Scholar 

  14. Laposata, M., Kaiser, S.L., and Capriotti, A.M. (1988)J. Biol. Chem. 263, 3266–3273.

    PubMed  CAS  Google Scholar 

  15. Holub, B.J., and Kuksis, A. (1978)Adv. Lipid Res. 16, 1–125.

    PubMed  CAS  Google Scholar 

  16. Conroy, D.M., Stubbs, C.D., Belin J., Pryor, C.L., and Smith, A.D. (1986)Biochim. Biophys. Acta 861, 457–462.

    Article  PubMed  CAS  Google Scholar 

  17. Brenner, R.R. (1984)Prog. Lipid Res. 23, 69–96.

    Article  PubMed  CAS  Google Scholar 

  18. Terano, T., Salmon, J.A., and Moncada, S. (1984)Biochem. Pharmacol. 33, 3071–3076.

    Article  PubMed  CAS  Google Scholar 

  19. Knapp, H.R., Reilly, I.A.G., Alessandrini, P., and Fitzgerald, G.A. (1986)New Engl. J. Med. 314, 937–942.

    Article  PubMed  CAS  Google Scholar 

  20. Sim, A.K., and McCraw, A.P. (1977)Throm. Res. 10, 385–397.

    Article  CAS  Google Scholar 

  21. Fisher, M., Upchurch, K.S., Levine, P.H., Johnson, M.H., Vaudreuil, C.H., Natale, A., and Hoogasian, J.J. (1986)Inflammation 10, 387–392.

    Article  PubMed  CAS  Google Scholar 

  22. Kelly, C.J., Zurier, R.B., Krakauer, K.A., Blauchard, N., and Neilson, E.G. (1987)J. Clin. Invest. 79, 782–789.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, C.C., and Ziboh, V.A. (1988)Biochem. Biophys. Res. Commun. 154, 967–974.

    Article  PubMed  CAS  Google Scholar 

  24. Somers, S.D., Chapkin, R.S., and Erickson, K.L. (1989)Cellular Immunol. 123, 201–211.

    Article  CAS  Google Scholar 

  25. Chapkin, R.S., Somers, S.D., and Erickson, K.L. (1988)Lipids 23, 766–770.

    Article  PubMed  CAS  Google Scholar 

  26. Fritsche, K.L., and Johnston, P.V. (1988)J. Nutr. 118, 425–426.

    PubMed  CAS  Google Scholar 

  27. Chapkin, R.S., Somers, S.D., and Erickson, K.L. (1988)J. Immunol. 140, 2350–2355.

    PubMed  CAS  Google Scholar 

  28. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  29. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957)J. Biol. Chem. 22, 497–509.

    Google Scholar 

  30. Chapkin, R.S., Haberstroh, B., Liu, T., and Holub, B.J. (1983)J. Lab. Clin. Med. 101, 726–735.

    PubMed  CAS  Google Scholar 

  31. Weiner, T.W., and Sprecher, H. (1984)Biochim. Biophys. Acta 792, 293–303.

    PubMed  CAS  Google Scholar 

  32. Blank, M.L., Robinson, M., Fitzgerald, V. and Snyder, F. (1984)J. Chromatogr. 298, 473–482.

    Article  PubMed  CAS  Google Scholar 

  33. Myher, J.J., and Kuksis, A. (1984)Can. J. Biochem. Cell Biol. 62, 352–362.

    Article  PubMed  CAS  Google Scholar 

  34. Blank, M.L., Lee, T.C., Cress, E.A., Fitzgerald, V., and Snyder, F. (1986)Arch. Biochem. Biophys. 251, 55–60.

    Article  PubMed  CAS  Google Scholar 

  35. Sokal, R.R., and Rohlf, F.J. (1981) inBiometry, 2nd edn., pp. 180–262, Freeman Press, New York.

    Google Scholar 

  36. Sugiura, T., Onuma, Y., Sekiguchi, N., and Waku, K. (1982)Biochim. Biophys. Acta 712, 515–522.

    PubMed  CAS  Google Scholar 

  37. Lokesh, B.R., Hsieh, H.L., and Kinsella, J.E. (1986)J. Nutr. 116, 2547–2552.

    PubMed  CAS  Google Scholar 

  38. Ninio, E., Mencia-Huerta, J.M., Heymans,F., and Benveniste, J. (1982)Biochim. Biophys. Acta 710, 23–31.

    PubMed  CAS  Google Scholar 

  39. Albert, D.H., and Snyder, F. (1983)J. Biol. Chem. 258, 97–102.

    PubMed  CAS  Google Scholar 

  40. Elstad, M.R., Prescott, S.M., McIntyre, T.M., and Zimmerman, G.A. (1988)J. Immunol. 140, 1618–1624.

    PubMed  CAS  Google Scholar 

  41. Croft, K.D., Sturm, M.J., Codde, J.P., Vandogen, R., and Beilin, L.J. (1986)Life Sci. 38, 1875–1882.

    Article  PubMed  CAS  Google Scholar 

  42. Sperling, R.I., Robin, J.L., Kylander, K.A., Lee, T.H., Lewis, R.A., and Austen, K.F. (1987)J. Immunol. 139, 4186–4191.

    PubMed  CAS  Google Scholar 

  43. Kunkel, S.L., Ogawa, H., Ward, P.A., and Zurier, R.B. (1981)Prog. Lipid Res. 20, 885–889.

    Article  PubMed  CAS  Google Scholar 

  44. Chapkin, R.S., Miller, C.C., Somers, S.D., and Erickson, K.L. (1988)Biochem. Biophys. Res. Commun. 153, 799–804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chapkin, R.S., Carmichael, S.L. Effects of dietary n−3 and n−6 polyunsaturated fatty acids on macrophage phospholipid classes and subclasses. Lipids 25, 827–834 (1990). https://doi.org/10.1007/BF02535905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535905

Keywords

Navigation