Log in

Microwave Hall effect measurements in biomacromolecular systems

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Microwave Hall effect measurements have recently been applied to the study of the electronic properties of biological materials. A basic outline of the relevance of the Hall effect for such biological studies is given, together with a brief summary of the various techniques available for its detection. Particular emphasis is given to the bimodal cavity microwave technique, since this appears to be the most suitable for the investigation of biological materials. Some of the results reported in the literature are discussed in order to give, hopefully, a realistic appraisal of their worth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Szent-Györgyi,Nature 148 (1941) 157.

    Google Scholar 

  2. D. D. Eley,Nature 162 (1948) 819.

    Google Scholar 

  3. D. D. Eley,Horizons in Biochemistry, (Academic Press, New York, 1962) 341.

    Google Scholar 

  4. D. D. Eley,Organic Semiconducting Polymers, (Edward Arnold Ltd., London, 1968) 259.

    Google Scholar 

  5. B. Rosenberg and E. Postow,Ann. New York Acad. Sci.,158 (1969) 161.

    Google Scholar 

  6. B. Rosenberg,Disc. Faraday Soc.,51 (1971) 190.

    Article  Google Scholar 

  7. M. G. Evans and J. Gergely,Biochim. Biophys. Acta 3 (1949) 188.

    Article  Google Scholar 

  8. M. Suard-Sender,J. Chim. Phys.,62 (1965) 79, 89.

    Google Scholar 

  9. R. Pethig,J.I.E.E. Electronics and Power 14 (1968) 271.

    Google Scholar 

  10. R. Pethig,J.I.E.E. Electronics and Power 19 (1973) 445.

    Google Scholar 

  11. E. H. Hall,Amer. J. Math. 2 (1879) 287.

    MATH  MathSciNet  Google Scholar 

  12. W. Shockley,Electrons and Holes in Semiconductors, (van Nostrand, New York, 1950) 339.

    Google Scholar 

  13. L. Friedman,Phys. Rev. 133 (1964) A1668.

    Article  ADS  Google Scholar 

  14. W. H. Mitchel and E. H. Putley,J. Sci. Instr. 36 (1959) 134.

    ADS  Google Scholar 

  15. G. Fischer, D. Greig and E. Mooser,Rev. Sci. Instr. 32 (1961) 842.

    Google Scholar 

  16. G. Heilmeier and S. E. Harrison,Phys. Rev. 132 (1963) 2010.

    Article  ADS  Google Scholar 

  17. L. J. van der Pauw,Philips Research Repts.,13 (1958) 1.

    Google Scholar 

  18. J. Hornstra and L. J. van der Pauw,J. Electronics and Control,7 (1959) 169.

    Google Scholar 

  19. R. Pethig and K. Morgan,Nature 214 (1967) 266.

    Google Scholar 

  20. K. Morgan and R. Pethig,J. Materials Sci. 6 (1971) 179.

    Google Scholar 

  21. J. R. MacDonald and J. E. Robinson,Phys. Rev. 95 (1954) 44.

    Article  ADS  Google Scholar 

  22. H. Gobrecht, K. H. Franke, F. Niemeck and K. E. Boeters,Z. Angew. Phys. 13 (1961) 261.

    Google Scholar 

  23. F. Ryan,Rev. Sci. Instr. 33 (1962) 76.

    Article  Google Scholar 

  24. A. M. Hermann and J. S. Ham,Rev. Sci. Instr. 36 (1965) 1553.

    Article  Google Scholar 

  25. M. Faraday,Ann. Chi. Phys. 17 (1845) 359.

    Google Scholar 

  26. E. Verdet,C. R. Acad. Sci. Paris 36 (1854) 548.

    Google Scholar 

  27. H. Piller,Semiconductors and Semimetals, Vol. 8, Ch. 3, (Academic Press, New York and London, 1972).

    Google Scholar 

  28. R. R. Rau and M. E. Caspari,Phys. Rev. 100 (1955) 632.

    Article  ADS  Google Scholar 

  29. B. Donovan and J. Webster,Proc. Phys. Soc. 79 (1962) 46;ibid. 81 (1963) 90.

    Google Scholar 

  30. J. K. Furdyna and S. Broersma,Phys. Rev. 120 (1960) 1995.

    Article  ADS  Google Scholar 

  31. G. P. Srivastava and B. R. Sethi,Brit. J. Appl. Phys. (J. Phys. D) 2 (1969) 1089.

    ADS  Google Scholar 

  32. B. Donovan and T. Medcalf,Brit. J. Appl. Phys. 15 (1964) 1139.

    ADS  Google Scholar 

  33. D. J. White, R. J. Dinger and H. H. Wieder,J. Appl. Phys. 38 (1967) 3171.

    Google Scholar 

  34. D. J. White,J. Appl. Phys. 39 (1968) 5083.

    Google Scholar 

  35. H. Suhl and L. R. Walker,Phys. Rev. 86 (1952) 122.

    Article  ADS  Google Scholar 

  36. B. Donovan and Y. Ruscoe,Brit. J. Appl. Phys. 18 (1967) 621.

    Article  ADS  Google Scholar 

  37. A. Bouwknegt and J. Volger,Physica 30 (1964) 113.

    Article  Google Scholar 

  38. A. M. Portis and D. Teaney,J. Appl. Phys. 29 (1958) 1692.

    Article  Google Scholar 

  39. N. Watanabe,Rev. Elect. Comm. Lab. Japan,8 (1960) 256.

    Google Scholar 

  40. S. H. Liu, Y. Nishina and R. H. Good,Rev. Sci. Instr. 32 (1961) 784.

    Article  Google Scholar 

  41. D. P. Snowden,IRE Trans. on Instrumentation (1962) 156.

  42. D. W. Griffin,Brit. J. Appl. Phys. 18 (1967) 1743.

    Article  ADS  Google Scholar 

  43. E. M. Gershenzon and V. N. Martsinkevich,Sov. Phys. — Semiconductors,4, (1970) 450.

    Google Scholar 

  44. G. Conciauro, M. Puglisi, C. Franconi, P. Galuppi and E. Randazzo,J. Mag. Resonance,9 (1973) 363.

    Google Scholar 

  45. D. T. Teaney, M. P. Klein and A. M. Portis,Rev. Sci. Instr. 32 (1961) 721.

    Article  Google Scholar 

  46. E. M. Trukhan,Instr. and Exp. Techniques (USA),4 (1965) 947.

    Google Scholar 

  47. D. D. Eley and R. Pethig,Disc. Faraday Soc.,51 (1971) 164.

    Google Scholar 

  48. E. M. Trukhan,Radio Engineering and Electronic Physics,11 (1966) 1097.

    Google Scholar 

  49. E. M. Trukhan,Biofizika,11 (1966) 412.

    Google Scholar 

  50. D. D. Eley and R. Pethig,J. Bioenergetics 1 (1970) 109;2 (1971) 39.

    Google Scholar 

  51. D. D. Eley and R. Pethig,Conduction in Low-Mobility Materials, (Taylor and Francis Ltd., London, 1971) 397.

    Google Scholar 

  52. S. Y. Chai and P. O. Vogelhut,J. Appl. Phys. 38 (1967) 613.

    Article  Google Scholar 

  53. R. Bogomolni and M. P. Klein,Proc. Int. Conf. on the Photosynthetic Unit, Gatlinburg, Tennessee (1970) 20–46.

  54. E. M. Trukhan, N. F. Perevozchikov and M. A. Ostrovskii,Biofizika 15 (1970) 1052.

    Google Scholar 

  55. R. K. Gupta,Biochim. Biophys Acta 292 (1973) 291.

    Google Scholar 

  56. R. K. Gupta and T. Yonetani,Biochim. Biophys. Acta 292 (1973) 502.

    Google Scholar 

  57. D. D. Eley, R. J. Mayer and R. Pethig,J. Bioenergetics 3 (1972) 271:4 (1972) 389.

    Google Scholar 

  58. D. D. Eley, M. J. Hey and A. J. I. Ward,Proc. R. Soc. Lond. A 331 (1973) 457

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pethig, R. Microwave Hall effect measurements in biomacromolecular systems. J Biol Phys 1, 193–214 (1973). https://doi.org/10.1007/BF02309014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02309014

Keywords

Navigation