Log in

The roman strains of rats as a psychogenetic tool for pharmacological investigation of working memory: example with RU 41656

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

This study examined the effects of RU 41656, a dopaminergic D2 agonist, on the differential working memory performances and on the differential activities of the neurochemical systems of the Roman high (RHA) and Roman low (RLA) avoidance strains of rats. Compared with RLA, RHA performed worse in three tests of working memory (spontaneous alternation, radial maze and object recognition) and had higher levels of exploratory locomotor activity. Hippocampal and frontal cortex choline acetyltransferase (ChAT) activities were loer in RHA. Frontal cortex DA and DOPAC levels, hippocampal and striatal 5-HT and NA levels were higher in RHA. RU 41656 induced a significant improvement in working memory performance of RHA, whereas in RLA it had no effect. It decreased exploratory locomotor activity in both strains. ChAT activity in hippocampus was not affected by RU 41656 in either strain, whereas in frontal cortex it was increased in RHA but not in RLA. Hippocampal NA levels were decreased by RU 41656 in RHA but not in RLA. These results confirm previous data concerning the promnesic effect of RU 41656 and extend the finding that the Roman strains are a psychogenetic model for the behavioural, neurochemical and psychopharmacological study of the working memory in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis in geriatric memory dysfunction. Science 217:408–417

    Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6:173–196

    Article  Google Scholar 

  • Beninger RJ, Wirsching BA, Jhamandas K, Boegman RJ, ElDefrawi SR (1986) Effects of altered cholinergic function on working and reference memory in the rat. Can J Physiol Pharmacol 64:376–382

    PubMed  Google Scholar 

  • Bignami G (1965) Selection for high rates and low rates of avoidance conditioning in the rat. Anim Behav 13:221–227

    Google Scholar 

  • Broadhurst P, Bignami G (1965) Correlative effects of psychogenetic selection: a study of the Roman high and low avoidance strains of rats. Behav Res Ther 2:273–280

    Article  Google Scholar 

  • Bruning JL, Kintz BL (1987) Computational handbook of statistics. Scott Foresman Glenview

  • Buxton DA, Brimblecombe RW, French MC, Redfern PH (1976) Brain acetylcholine concentration and acetylcholinesterase activity in selectively bred strains of rats. Psychopharmacology 47:97–99

    Google Scholar 

  • Casamenti F, Deffenu G, Abbamondi AL, Pepeu G (1986) Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res Bull 16:689–695

    Article  PubMed  Google Scholar 

  • Chrobak JJ, Hanin I, Schmechel DE, Walsh TJ (1988) AF64A-induced working memory impairment: behavioral, neurochemical and histological correlates. Brain Res 463:107–117

    Article  PubMed  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Coyle JT, Price DL, Delong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Google Scholar 

  • Crutcher KA, Kesner RP, Novak JM (1983) Medial septal lesions, radial maze performance, and sympathetic sprouting: a study of recovery of functions. Brain Res 262:91–98

    Article  PubMed  Google Scholar 

  • D'Angio M, Serrano A, Driscoll P, Scatton B (1988) Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high- avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study. Brain Res 451:237–247

    Article  PubMed  Google Scholar 

  • Decker AJAM, Connor DJ, Thal LJ (1991) The role of cholinergic projections from the nucleus basalis in memory. Neurosci Biobehav Rev 15:299–317

    Google Scholar 

  • Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7:151–168

    Article  PubMed  Google Scholar 

  • Driscoll P (1988) Hypothalamic serotonin turnover in Roman High- and Low-Avoidance (RHA/Verh and RLA/Verh) rats. Experientia 44:A70

    Google Scholar 

  • Driscoll P, Bättig K (1982) Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In: Lieblich I (ed) Genetics of the brain. Elsevier, Amsterdam, pp 95–123

    Google Scholar 

  • Driscoll P, Dedek J, Martin JR, Bättig K (1980) Regional 5-HT analysis in roman high- and low-avoidance rats following MAO inhibition. Eur J Pharmacol 68:373–376

    Article  PubMed  Google Scholar 

  • Driscoll P, Dedek J, Martin JR, Zivkovic B (1983) Two-way avoidance and acute shock stress induced alterations of regional noradrenergic, dopaminergic and serotoninergic activity in Roman high- and low-avoidance rats. Life Sci 33:1719–1725

    Article  PubMed  Google Scholar 

  • Driscoll P, Claustre Y, Fage D, Scatton B (1987) Recent findings in central dopaminergic and cholinergic neurotransmission of Roman high and low avoidance (RHA/Verh and RLA/Verh) rats. Behav Brain Res 26:213

    Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Google Scholar 

  • Euvrard C, Ferland L, Di Paulo T, Beaulieu M, Labrie F, Oberlander C, Raynaud JP, Boissier JR (1980) Activity of two potent dopaminergic agonists at the striatal and anterior pituitary levels. Neuropharmacology 19:375–380

    Article  Google Scholar 

  • Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388

    Article  Google Scholar 

  • Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24:407–409

    PubMed  Google Scholar 

  • Gauchy C, Tassin JP, Glowinsky J, Cheramy A (1976) Isolation and radioenzymatic estimation of picogram quantities of dopamine and norepinephrine in biological samples. J Neurochem 26:471–480

    PubMed  Google Scholar 

  • Gold PE, Zornetzer SF (1983) The mnemon and its juices: neuromodulation of memory processes. Behav Neural Biol 38:151–189

    Google Scholar 

  • Guenaire C, Delacour J (1985) Differential acquisition of a working memory task by the roman strains of rats. Physiol Behav 34:705–708

    Google Scholar 

  • Guenaire C, Feghali G, Senault B, Delacour J (1986) Psychophysiological profiles of the Roman strains of rats. Physiol Behav 37:423–428

    Google Scholar 

  • Hagan JJ, Morris RGM (1987) The cholinergic hypothesis of memory: A review of animal experiments. In: Iversen LL et al (eds) Handbook of psychopharmacology 20. Plenum Press, New York, pp 237–323

    Google Scholar 

  • Harley CW (1987) A role for norepinephrine in arousal, emotion and learning?: Limbic modulation by norepinephrine and the Kety hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 11:419–458

    Google Scholar 

  • Helper DJ, Olton DS, Wenk GL, Coyle JT (1985) Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J Neurosci 5:866–873

    PubMed  Google Scholar 

  • Honig WK (1978) Studies of working memory in the pigeon. In: Hulse SA et al. (eds) Cognitive processes in animal behavior. Erlbaum, Hillsdale, pp 211–248

    Google Scholar 

  • Hunt PF, Cousty D, Demassey Y, Oberlander C, Verdu A, Viet D (1987) Dopaminergic activity of RU 41656 a novel cerebral activator. Xth International Congress of Pharmacology, Sydney, Australia, August 23–28, P1011

  • Imada I (1972) Emotional reactivity and conditionability in four strains of rats. J Comp Physiol Psychol 79:474–480

    PubMed  Google Scholar 

  • Jaffard R, Galey D, Micheau J, Durkin T (1985) The cholinergic septohippocampal pathway: learning and memory. In: Will BE, Schmitt P, Dalrymple-Alford JC (eds) Brain plasticity, learning and memory. Plenum Press, New York, pp 167–181

    Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic catecholamine, serotonin, and acetylcholine neurons. Neuroscience 31:37–61

    Article  PubMed  Google Scholar 

  • Kesner RP, Crutcher KA, Meason MO (1986) Medial septal and nucleus basalis magnocellularis lesions produce order memory deficits in rats which mimic symptomatology of Alzheimer's disease. Neurobiol Aging 7:287–295

    Article  PubMed  Google Scholar 

  • Kesner RP, Dimattia BV, Crutcher KA (1987) Evidence for neocortical involvement in reference memory. Behav Neural Biol 47:40–53

    Google Scholar 

  • Kruglikov RI (1982) On the interaction of neurotransmitter systems in processes of learning and memory. In: Marsan CA, Matthies (eds) Neuronal plasticity and memory formation. Raven Press New York, pp 339–351

    Google Scholar 

  • Kubanis P, Zornetzer SF (1981) Age-related behavioral and neurobiological changes: A review with an emphasis on memory. Behav Neural Biol 31:115–172

    Google Scholar 

  • Kuhar M, Murrin L (1978) Sodium-dependent high affinity choline uptake. J Neurochem 30:15–21

    PubMed  Google Scholar 

  • Levin ED, McGurk SR, Rose JE, Butcher LL (1989) Reversal of a mecamylamine-induced cognitive deficit with the D2 agonist, LY 171555. Pharmacol Biochem Behav 33:919–922

    Article  PubMed  Google Scholar 

  • M'Harzi M, Jarrard LE, Willig F, Palacios A, Delacour J (1991) Selective fimbria and thalamic lesions differentially impair forms of working memory in rats. Behav Neural Biol 56:221–239

    Google Scholar 

  • McGurk SR, Levin ED, Butcher LL (1989) Cholinergic-dopaminergic interactions in radial-arm maze performance: a lesion study. Soc Neurosci Abstr 15:733

    Google Scholar 

  • Mishkin M, Delacour J (1975) An analysis of short-term visual memory in the monkey. J Exp Psychol Anim Behav Proc 1:326–334

    Article  Google Scholar 

  • Mitchell SJ, Rawlins JNP, Steward O, Olton DS (1982) Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2:292–302

    PubMed  Google Scholar 

  • Miyamoto M, Kata J, Narumi S, Nagaoka A (1987) Characteristics of memory impairment following lesioning of the basal forebrain and medial septal nucleus in rats. Brain Res 419:19–31

    Article  PubMed  Google Scholar 

  • Murray CL, Fibiger HC (1985) Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine. Neuroscience 14:1025–1032

    Article  PubMed  Google Scholar 

  • Olton DS (1983) Memory functions and the hippocampus. In: Seifert W (ed) The neurobiology of the hippocampus. Academic Press, London, pp 335–373

    Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol [Anim Behav Proc] 2:97–116

    Google Scholar 

  • Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space and memory. Behav Brain Sci 2:313–365

    Google Scholar 

  • Overstreet DH, Driscoll P, Martin JR, Yamamura HI (1981) Brain muscarinic cholinergic receptor binding in Roman high- and low-avoidance rats. Psychopharmacology 72:143–145

    Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, Cross AJ, Dockray GJ, Dimaline R, Arregui A (1981) neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 2:251–256

    Article  PubMed  Google Scholar 

  • Richardson RT, De Long MR (1988) A reappraisal of the function ot the nucleus basalis of Meynert. Trends Neurosci 11:264–267

    Article  PubMed  Google Scholar 

  • Rick JT, Morris D, Kerkut GA (1968) Cholinesterase, choline-acetyltransferase and the production of γ-aminobutyric acid in the cerebral cortex of five behavioural strains of rats. Life Sci 7:733–739

    Article  Google Scholar 

  • Robbins TW, Everitt BJ, Ryan CN, Marston HM, Jones GH, Page KJ (1989) Comparative effects of quisqualic and ibotenic acid-induced lesions of the substantia innominata and globus pallidus on the acquisition of a conditional visual discrimination: differential effects on cholinergic mechanisms. Neuroscience 28:337–352

    Article  PubMed  Google Scholar 

  • Satinder KP, Hill KD (1974) Effects of genotype and postnatal experience on activity, avoidance, shock threshold and openfield behavior of rats. J Comp Physiol Psychol 86:363–374

    PubMed  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw Hill, New York

    Google Scholar 

  • Squire LR (1969) Effects of pre-trial and post-trial administration of cholinergic and anticholinergic drugs on spontaneous alternation. J Comp Physiol Psychol 74:41–45

    Google Scholar 

  • Vanderwolf CH (1988) Cerebral activity and behavior: control by central cholinergic and serotoninergic systems. Int Rev Neurobiol 30:226–240

    Google Scholar 

  • Vertes RP (1988) Brainstem afferents to the basal forebrain in the rat. Neuroscience 24:907–935

    Article  PubMed  Google Scholar 

  • Wenk G, Olton D (1987) Basal forebrain cholinergic neurons and Alzheimer's disease. In: Coyle JT (ed) Animal models of dementia. A. R. Liss, New York, pp 81–101

    Google Scholar 

  • Willig F, Palacios A, Monmaur P, M'Harzi M, Laurent J, Delacour J (1987) Short-term memory, exploration and locomotor activity in aged rats. Neurobiol Aging 8:393–402

    Article  PubMed  Google Scholar 

  • Willig F, Palou AM, Oberlander C (1989) Action identique d'agonistes dopaminergiques et de la physostigmine dans un test de mémoire à court terme chez le rat après lésion partielle du noyau septal médian. 3° Colloque National de la Société Française de Neurosciences, Montpellier, France, 9–12 Mai

  • Willig F, M'Harzi M, Bardelay C, Viet D, Delacour J (1991a) Roman strains as a psychogenetic model for the study of working memory: behavioral and biochemical data. Pharmacol Biochem Behav 40:7–16

    Google Scholar 

  • Willig F, M'Harzi M, Delacour J (1991b) Contribution of the Roman strains of rats to the elaboration of animal models of memory. Physiol Behav 50:913–919

    Google Scholar 

  • Wolkowitz OM, Tinklenberg JR, Weingartner HA (1985) Psychopharmacological perspective of cognitive functions. 2: Specific pharmacologic agents. Neuropsychobiology 14:133–156

    PubMed  Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1984) Cholinergic systems in the rat brain: 1. Projections to the limbic telencephalon. Brain Res Bull 13:751–784

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willig, F., Van de Velde, D., Laurent, J. et al. The roman strains of rats as a psychogenetic tool for pharmacological investigation of working memory: example with RU 41656. Psychopharmacology 107, 415–424 (1992). https://doi.org/10.1007/BF02245169

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245169

Key words

Navigation