Log in

Cellular localization and concentration of bone cyclic nucleotides in response to acute PTE administration

  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Summary

The cyclic AMP and cyclic GMP concentrations of alveolar bone of control and PTE-treated cats were measured by chemical and immunohistochemical methods. In the PTE-treated animals, alveolar bone osteoblasts stained intensely for cAMP, but very weakly for cGMP; the periodontal ligament (PDL) cells stained for cAMP similarly to the controls, but some PDL cells stained more intensely for cGMP than their controls; osteocytes stained for cAMP with greater intensity than in the controls; osteoclasts stained intensely for both cyclic nucleotides. We found that bone samples taken from animals 20 and 60 min after administration of PTE contained twice the amount of cAMP, and almost three times the amount of cGMP observed in the controls. These results indicate that the cellular source of bone cyclic nucleotides in PTE-treated animals varies as to cell type, and therefore in bone and PDL the functions mediated by cAMP are not necessarily antagonistic to those mediated by cGMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooker, T.L., Jr., Appleman, M.M.: The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in biological materials by enzymatic radio-isotopic displacement. Biochemistry7, 4177–4181 (1968)

    PubMed  Google Scholar 

  2. Chase, L.R., Aurbach, G.D.: The effect of parathyroid hormone on the concentration of adenosine 3′,5′-monophosphate in skeletal tissue in vitro. J. Biol. Chem.245, 1520–1526 (1970)

    PubMed  Google Scholar 

  3. Davidovitch, Z., Montgomery, P.C., Eckerdal, O., Gustafson, G.T.: Demonstration of cyclic GMP in bone cells by immunohistochemical methods. Calcif. Tiss. Res.19, 305–315 (1976)

    Google Scholar 

  4. Davidovitch, Z., Montgomery, P.C., Eckerdal, O., Gustafson, G.T.: Cellular localization of cyclic AMP in periodontal tissues during experimental tooth movement in cats. Calcif. Tiss. Res.19, 316–329 (1976)

    Google Scholar 

  5. Davidovitch, Z., Montgomery, P.C., Shanfeld, J.L.: Guanosine 3′,5′-monophosphate in bone: Microscopic visualization by an immunohistochemical technique. Calcif. Tiss. Res.24, 73–79 (1977).

    Google Scholar 

  6. DeLange, R.J., Kemp, R.G., Riley, W.D., Cooper, R.A., Krebs, E.G.: Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′,5′-monophosphate. J. Biol. Chem.243, 2200–2208 (1968)

    PubMed  Google Scholar 

  7. Diamantstein, T., Ulmer, A.: Effect of cyclic nucleotides on DNA synthesis in mouse lymphoid cells. Immun. Commun.4, 51–62 (1975)

    Google Scholar 

  8. Diamantstein, T., Ulmer, A.: Regulation of DNA synthesis by guanosine-5′-diphosphate, cyclic guanosine-3′,5′-monophosphate, and cyclic adenosine-3′,5′-monophosphate in mouse lymphoid cells. Exp. cell res.93, 309–314 (1974)

    Google Scholar 

  9. Dietze, G., Hepp, K.D.: Effect of 3′,5′-AMP on calcium-activated ATPase in rat heart sarcolemma. Biochem. Biophys. Res. Commun.46, 269–278 (1972)

    PubMed  Google Scholar 

  10. Eckerdal, O.: Tomography of the temporomandibular joint. Acta Radiologica, supplement329, 1–107 (1973)

    Google Scholar 

  11. Entmann, M.L., Levey, G.S., Epstein, S.E.: Mechanism of action of epinephrine and glucagon on the canine heart: Evidence for increase in sarcotubular calcium stores mediated by cyclic 3′,5′-AMP. Circ. Res.25, 429–438 (1969)

    PubMed  Google Scholar 

  12. Fransden, E.K., Krishna, G.: A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sciences18, 529–542 (1976)

    PubMed  Google Scholar 

  13. Friedmann, N.: Effects of glucagon and cyclic-AMP on ion fluxes in the perfused liver. Biochim. Biophys. Acta274, 214–225 (1972)

    PubMed  Google Scholar 

  14. George, W.J., Polson, J.B., O'Toole, A.G., Goldberg, N.D.: Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Nat. Acad. Sci. USA66, 398–403 (1970)

    PubMed  Google Scholar 

  15. Gillette, R.W., McKenzie, G.O., Swanson, M.H.: Modification of the lymphocyte response to mitogens by cyclic AMP and cyclic GMP. J. Reticuloendoth. Soc.16, 289–299 (1974)

    Google Scholar 

  16. Gilman, A.G.: A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Nat. Acad. Sci. USA67, 305–312 (1970)

    PubMed  Google Scholar 

  17. Goldberg, N.O., O'Dea, R.F., Haddox, M.K.: Cyclic GMP. In: Advances in cyclic nucleotide research (Greengard, P., and Robison, G.A., eds.), Vol. 3, pp. 155–223. New York: Raven Press 1973

    Google Scholar 

  18. Graham, R.C., Karnovsky, M.J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem.14, 291–302 (1966)

    PubMed  Google Scholar 

  19. Herrmann-Erlee, M.P.M.: A parathyroid-like action of dibutyryl cyclic adenosine 3′,5′-monophosphate on the explanted embryonic mouse radius. Calcif. Tiss. Res.4 (supplement), 70–72 (1970)

    Google Scholar 

  20. Ignarro, L.J., George, W.J.: Mediation of immunologic discharge of lysosomal enzymes from human neutrophils by guanosine 3′,5′-monophosphate. J. Exp. Med.140, 225–238 (1974)

    PubMed  Google Scholar 

  21. Johnson, L.D., Hadden, J.W.: Cyclic GMP and lymphocyte proliferation: Effects of DNA-dependent RNA polymerase I and II activities. Biochem. Biophys. Res. Commun.66, 1498–1505 (1975)

    PubMed  Google Scholar 

  22. Mason, T.E., Phifer, R.F., Spicer, S.S., Swallow, R.A., Dreskin, R.B.: An immunoglobulin-enzyme bridge method for localizing tissue antigens. J. Histochem. Cytochem.17, 563–569 (1969)

    PubMed  Google Scholar 

  23. Matthews, J.L., Martin, J.H.: Intracellular transport of calcium and its relationship to homeostasis and mineralization: An electron microscope study. Am. J. med.50, 589–597 (1971)

    PubMed  Google Scholar 

  24. McGuire, J.L., Marks, S.C.: The effects of parathyroid hormone on bone cell structure and function. Clin. Orthopaed.100, 392–405 (1974)

    Google Scholar 

  25. Murad, F., Brewer, H.B., Jr., Vaughn, M.: Effect of thyrocalcitonin on adenosine 3′,5′-cyclic phosphate formation by rat kidney and bone. Proc. Nat. Acad. Sci. USA65, 446–453 (1970)

    PubMed  Google Scholar 

  26. Nagata, N., Sasaki, M., Kimura, N., Nakane, K.: Effects of porcine calcitonin on the metabolism of calcium and cyclic AMP in rat skeletal tissue in vivo. Endocrinology97, 527–535 (1975)

    PubMed  Google Scholar 

  27. Nagata, N., Kimura, N., Sasaki, M., Nakane, K., Tanaka, Y.: Localization of cell groups sensitive to parathyroid hormone and calcitonin in rat skeletal tissue. Biochim. Biophys. Acta421, 218–227 (1976)

    PubMed  Google Scholar 

  28. Park, H.Z., Talmage, R.V.: Relation of endogenous parathyroid secretion to3H-cytidine incorporation into bone cells. Endocrinology80, 552–560 (1967)

    PubMed  Google Scholar 

  29. Peck, W.A., Carpenter, J., Messinger, K., DeBra, D.: Cyclic 3′,5′ adenosine monophosphate in isolated bone cells: Response to low concentrations of parathyroid hormone. Endocrinology92, 692–697 (1973)

    PubMed  Google Scholar 

  30. Prince, W.T., Berridge, M.J., Rasmussen, H.: Role of calcium and adenosine 3′,5′-cyclic monophosphate in controlling fly salivary gland secretion. Proc. Nat. Acad. Sci. USA69, 553–557 (1972)

    PubMed  Google Scholar 

  31. Rao, L.G., Brunette, D.M., Heersche, J.N.M.: PTH-response after long-term culture and sub-culture of cells from newborn rat calvaria. J. Dent. Res.55, B303 (1976)

    Google Scholar 

  32. Roberts, W.E.: Cell population dynamics of periodontal ligament stimulated with parathyroid extract. Am. J. Anat.143, 363–370 (1975)

    PubMed  Google Scholar 

  33. Roberts, W.E., Chamberlain, J.G.: Scanning electron microscopy (SEM) of the cellular and vascular elements of rat periodontal ligament (PDL). J. Dent. Res.55, B165 (1976)

    Google Scholar 

  34. Rodan, S.B., Rodan, G.A.: The effect of parathyroid hormone and thyrocalcitonin on the accumulation of cyclic adenosine 3′,5′-monophosphate in freshly isolated bone cells. J. Biol. Chem.249, 3068–3074 (1974)

    PubMed  Google Scholar 

  35. Rodan, G.A., Bourret, L.A., Harvey, A., Mensi, T.: Cyclic AMP and cyclic GMP: Mediators of the mechanical effects on bone remodeling. Science189, 467–469 (1975)

    PubMed  Google Scholar 

  36. Shanfeld, J., Shapiro, I., Davidovitch, Z.: The measurement of adenosine 3′,5′-monophosphate in bone. Anal. Biochem.66, 450–459 (1975)

    PubMed  Google Scholar 

  37. Smith, D.M., Johnston, C.C., Jr.: Cyclic 3′,5′-adenosine monophosphate levels in separated bone cells. Endocrinology96, 1261–1269 (1975)

    PubMed  Google Scholar 

  38. Soderling, T.R., Hickenbottom, V.P., Reimann, E.M., Hunkeler, F.L., Walsh, D.A., Krebs, E.G.: Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3′,5′-monophosphate-dependent protein kinases. J. Biol. Chem.245, 6317–6328 (1970)

    PubMed  Google Scholar 

  39. Talmage, R.V., Cooper, C.W., Park, H.Z.: Regulation of calcium transport in bone by parathyroid hormone. Vitamins and Hormones28, 103–140 (1970)

    PubMed  Google Scholar 

  40. Voorhees, J.J., Stawiski, M., Duell, E.A.: Increased cyclic GMP and decreased cyclic AMP levels in the hyperplastic, abnormally differentiated epidermis of psoriasis. Life Sciences13, 639–653 (1973)

    Google Scholar 

  41. Walsh, D.A., Perkins, J.P., Krebs, E.G.: An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J. Biol. Chem.243, 3763–3765 (1968)

    PubMed  Google Scholar 

  42. Weisbrode, S.E., Capen, C.C., Nagode, L.A.: Effects of parathyroid hormone on bone of thyroparathyroidectomized rats. Am. J. Path.75, 529–536 (1974)

    PubMed  Google Scholar 

  43. Weissmann, G., Goldstein, I., Hoffstein, S., Tsung, P.K.: Reciprocal effects of cAMP and cGMP on microtubule-dependent release of lysosomal enzymes. Ann. N.Y. Acad. Sci.253, 750–762 (1975)

    PubMed  Google Scholar 

  44. Wicks, W.D.: Tyrosine-α-ketoglutarate transaminase: Induction by epinephrine and adenosine 3′,5′-cyclic phosphate. Science160, 997–998 (1968)

    PubMed  Google Scholar 

  45. Wicks, W.D.: Regulation of protein synthesis by cyclic AMP. In: Advances in cyclic nucleotide research. (Greengard, P. and Robison, G.A., eds.), Vol. 4, pp. 335–438. New York: Raven Press 1974

    Google Scholar 

  46. Zimmerman, T.P., Chu, L.C., Winston, M.S.: A more sensitive radioimmunoassay (RIA) for cyclic GMP (cG). Fed. Proc.34, 231 (1975)

    Google Scholar 

  47. Zurier, R.B., Hoffstein, S., Weissmann, G.: Mechanisms of lysosomal enzyme release from human leukocytes: I. Effect of cyclic nucleotides and colchicine. J. Cell Biol.58, 27–41 (1973)

    PubMed  Google Scholar 

  48. Zurier, R.B., Weissmann, G., Hoffstein, S., Kammerman, S., Tai, H.H.: Mechanisms of lysosomal enzyme release from human leukocytes: II. Effects of cAMP and cGMP, autonomic agonists and agents which affect microtubule function. J. Clin. Invest.53, 297–309 (1974)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidovitch, Z., Montgomery, P.C. & Shanfeld, J.L. Cellular localization and concentration of bone cyclic nucleotides in response to acute PTE administration. Calc. Tis Res. 24, 81–91 (1977). https://doi.org/10.1007/BF02223300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02223300

Key words

Navigation