Log in

On the convergence of multipoint Padé-type approximants and quadrature formulas associated with the unit circle

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the convergence of rational interpolants with prescribed poles on the unit circle to the Herglotz-Riesz transform of a complex measure supported on [−π, π]. As a consequence, quadrature formulas arise which integrate exactly certain rational functions. Estimates of the rate of convergence of these quadrature formulas are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Achieser,Theory of Approximation (Frederick Ungar, New York, 1956).

    Google Scholar 

  2. A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions and quadrature on the unit circle, Numer. Algorithms 3 (1992) 105–116.

    Google Scholar 

  3. A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonality and boundary interpolation, in:Nonlinear Numerical Methods and Rational Approximation II, ed. A. M. Cuyt (Kluwer, 1994) pp. 37–48.

  4. A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Quadrature formulas on the unit circle and two-point Padé approximation, in:Nonlinear Numerical Methods and Rational Approximation II, ed. A. M. Cuyt (Kluwer, 1994) pp. 303–318.

  5. A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Quadrature formulas on the unit circle based on rational functions, J. Comput. Appl. Math. 50 (1994) 159–170.

    Google Scholar 

  6. E. W. Cheney,Introduction to Approximation Theory (McGraw Hill, 1966).

  7. M. M. Djrbashian, A survey on the theory of orthogonal systems and some open problems, in:Orthogonal Polynomials: Theory and Practice, ed. P. Nevai, Mathematical and Physical Sciences, Series C 294 (NATO-ASI, Kluwer, Boston, 1990) pp. 135–146.

    Google Scholar 

  8. W. Gautschi, Gauss-type quadrature rules for rational functions, in:Numerical Integration IV, eds. H. Brass and G. Hammerlin, Internat. Ser. Numer. Math. 112 (1993) pp. 111–130.

  9. E. Godoy and F. Marcellan, Orthogonal polynomials and rational modification of measures, Canad. J. Math. 45 (1993) 930–943.

    Google Scholar 

  10. A. A. Gonchar and E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Math. USSR-Sb. 53 (1986) 119–130.

    Google Scholar 

  11. P. González-Vera, M. Jiménez-Páiz, G. López-Lagomasino and R. Orive, On the convergence of quadrature formulas connected with multipoint Padé-type approximants, J. Math. Anal. Appl. 202 (1996) 747–775.

    Google Scholar 

  12. P. González-Vera, G. López-Lagomasino, R. Orive and J. C. Santos-Leon, On the convergence of quadrature formulas for complex weight functions, J. Math. Anal. Appl. 189 (1995) 514–532.

    Google Scholar 

  13. P. González-Vera, O. Njåstad and J.C. Santos-Leon, Some numerical results about quadrature formulas on the unit circle, Adv. Comput. Math. 5 (1996) 297–328.

    Google Scholar 

  14. J. Illan and G. López-Lagomasino, A note on generalized quadrature formulas of Gauss-Jacobi type, in:Constructive Theory of Functions '84, Sofia (1984) pp. 513–518.

  15. W. B. Jones, O. Njåstad and W. J. Thron, Moment theory, orthogonal polynomials, quadrature and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113–152.

    Google Scholar 

  16. A. Máté, P. Nevai and V. Totik, Strong and weak convergence of orthogonal polynomials, Amer. J. Math. 109 (1987) 239–281.

    Google Scholar 

  17. J. Nuttal and C. J. Wherry, Gauss integration for complex weight functions, J. Inst. Math. Appl. 21 (1987) 165–170.

    Google Scholar 

  18. E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Mat. Sb. 32 (1977) 199–213.

    Google Scholar 

  19. E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials II, Mat. Sb. 46 (1983) 105–117.

    Google Scholar 

  20. H. Stahl and V. Totik,General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications (Cambridge University Press, 1992).

  21. G. Szegó,Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 33 (Amer. Math. Soc., Providence, RI, 3rd ed., 1967; 1st ed., 1939).

    Google Scholar 

  22. W. Van Assche and I. Vanherwegen, Quadrature formulas based on rational interpolation, Math. Comp. 16 (1993) 765–783.

    Google Scholar 

  23. H. Wallin, Potential theory and approximation of analytic functions by rational interpolation, in:Complex Analysis, Joensuu 1978, eds. I. Laine, O. Letho and T. Sorvali, Lecture Notes in Mathematics 747 (Springer, 1979) pp. 434–450.

  24. J. L. Walsh,Interpolation and Approximation, Amer. Math. Soc. Colloq. Publ. 20 (Amer. Math. Soc., Providence, RI, 3rd ed., 1960; 1st ed., 1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Brezinski

This research was performed as part of the European project ROLLS under contract CHRX-CT93-0416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bultheel, A., González-Vera, P., Hendriksen, E. et al. On the convergence of multipoint Padé-type approximants and quadrature formulas associated with the unit circle. Numer Algor 13, 321–344 (1996). https://doi.org/10.1007/BF02207699

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207699

Keywords

AMS subject classification

Navigation