Log in

Importance of mitochondrial transmembrane processes in human mitochondriopathies

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In a substantial group of subjects suspected to have a mitochondriopathy no defect in the mitochondrial energy metabolism (pyruvate dehydrogenase complex or respiratory chain complexes) can be demonstrated. At least in some of these subjects it seems justified to consider a defect in one of the proteins which mediate the transport of several ions and substrates across the mitochondrial membranes. Of particular interest are proteins which are directly involved in the process of oxidative phosphorylation, such as the adenine nucleotide translocator (ANT) and the phosphate carrier (PiC). However, defects in transmembrane ion transporters also may induce impaired energy metabolism probably as a result of osmotic disturbances within the mitochondrial matrix. In this respect, the voltage-dependent anion channel (VDAC) and other ion channels have to be taken into consideration. Here we review the still incomplete knowledge of the occurrence of ANT, PiC, VDAC, cation channels, and a few substrate carriers in human tissues, as well as their possible role in pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MITEM:

mitochondrial energy metabolism

ANT:

adenine nucleotide translocator

PiC:

phosphate carrier

VDAC:

voltage-dependent anion channel

IMM:

inner mitochondrial membrane

OMM:

outer mitochondrial membrane

References

  • Azzi, A., Glerum, M., Koller, R., Mertens, W., and Spycher, S. (1993).J. Bioenerg. Biomembr. 25, 515–523.

    Article  PubMed  Google Scholar 

  • Bakker, H. D., Scholte, H. R., Van den Bogert, C., Ruitenbeek, W., Jeneson, J. A. L., Wanders, R. J. A., Abeling, N. G. G. M., Dorland, B., Sengers, R. C. A., and Van Gennip, A. H. (1993).Pediatr. Res. 33, 412–417.

    PubMed  Google Scholar 

  • Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S., and Baserga, R. (1987).J. Biol. Chem. 9, 4355–4359.

    Google Scholar 

  • Beavis, A. D., Lu, Y., and Garlid, K. D. (1993).J. Biol. Chem. 268, 997–1004.

    PubMed  Google Scholar 

  • Benz, R. (1994).Biochim. Biophys. Acta 1197, 167–196.

    PubMed  Google Scholar 

  • Blachly-Dyson, E., Zambronicz, E. B., Yu, W. H., Adams, V., McCabe, E. R. B., Adelman, J., Colombini, M., and Forte, M. (1993).J. Biol. Chem. 268, 1835–1841.

    PubMed  Google Scholar 

  • Blachly-Dyson, E., Baldini, A., Litt, M., McCabe, E. R. B., and Forte, M. (1994).Genomics 20, 62–67.

    Article  PubMed  Google Scholar 

  • Brandolin, G., Le Saux, A., Trezeguet, V., Lanquin, G. J. M., and Vignais, P. V. (1993).J. Bioenerg. Biomembr. 25, 459–472.

    Article  PubMed  Google Scholar 

  • Brdiczka, D., and Wallimann, T. (1994).Mol. Cell. Biochem. 133/ 134, 69–83.

    Article  Google Scholar 

  • Brierley, G. P., Baysal, K., and Jung, D. W. (1994).J. Bioenerg. Biomembr. 26, 519–526.

    Article  PubMed  Google Scholar 

  • Carafoli, E., Caroni, P., Chiesi, M., and Famulski, K. (1982). InMetabolic Compartmentation (Sies, H., ed.), Academic Press, London, pp. 521–547.

    Google Scholar 

  • Coates, P. M., and Tanaka, K. (1992).J. Lipid Res. 33, 1099–1110.

    PubMed  Google Scholar 

  • Cox, D. A., and Matlib, M. A. (1993).J. Biol. Chem. 268, 938–947.

    PubMed  Google Scholar 

  • Cozens, A. L., Runswick, M. J., and Walker, J. E. (1989).J. Mol. Biol. 206, 261–280.

    Article  PubMed  Google Scholar 

  • DiMauro, S. (1993). InThe Molecular and Genetic Basis of Neurological Disease (Rosenburg, R. N., Prusiner, S. B., DiMauro, S., Barchi, L. R., and Kunkel, L. M., eds.), Butterworth-Heinemann, Boston, pp. 665–694.

    Google Scholar 

  • Dolce, V., Fiermonte, G., Messina, A., and Palmieri, F. (1991).DNA Sequence 2, 133–135.

    PubMed  Google Scholar 

  • Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994).J. Biol. Chem. 269, 10451–10460.

    PubMed  Google Scholar 

  • Engel, W. K. (1979).Arch. Neurol. 36, 329–339.

    PubMed  Google Scholar 

  • Ferreira, G. C., and Pederson, P. L. (1993).J. Bioenerg. Biomembr. 25, 483–492.

    Article  PubMed  Google Scholar 

  • Fischer, J. C., Ruitenbeek, W., GabreËls, F. J. M., Janssen, A. J. M., Renier, W. O., Sengers, R. C. A., Stadhouders, A. M., Ter Laak, H. J., Trijbels, J. M. F., and Veerkamp, J. H. (1986).Eur. J. Pediatr. 144, 441–444.

    Article  PubMed  Google Scholar 

  • Garlid, K. D. (1994).J. Bioenerg. Biomembr. 26, 537–542.

    Article  PubMed  Google Scholar 

  • Gellerich, F. N., Kapischke, M., Kunz, W., Neumann, W., Kuznetsov, A., Brdiczka, D., and Nicolay, K. (1994).Mol. Cell. Biochem. 133/134, 85–104.

    Article  Google Scholar 

  • Gunter, T. E. (1994).J. Bioenerg. Biomembr. 26, 465–469.

    Article  PubMed  Google Scholar 

  • Ha, H., Hajek, P., Bedwell, D. M., and Burrows, P. D. (1993).J. Biol. Chem. 268, 12143–12149.

    Google Scholar 

  • Hak, J. B., Van Beek, J. H. G. M., and Westerhof, N. (1993).Pflügers Arch. 423, 324–329.

    Article  Google Scholar 

  • Halestrap, A. P., Connern, C. P. and Griffiths, E. J. (1992). InMolecular Mechanisms of Transport (Quagliariello, E., and Palmieri, F., eds.), Elsevier, Amsterdam, pp. 259–266.

    Google Scholar 

  • Hayes, D. J., Taylor, D. J., Bore, P. J., Hilton-Jones, D., Arnold, D. L., Squier, M. V., Gent, A. E., and Radda, G. K. (1987).J. Neurol. Sci. 82, 27–39.

    Article  PubMed  Google Scholar 

  • Houldsworth, J., and Attardi, G. (1988).Proc. Natl. Acad. Sci. USA 85, 377–381.

    PubMed  Google Scholar 

  • Huizing, M., Ruitenbeek, W., Thinnes, F. P., and DePinto, V. (1994).Lancet 344, 762.

    Article  Google Scholar 

  • Indiveri, Tonazzi, A., Dierks, T., KrÄmer, R., and Palmieri, F. (1992).Biochim. Biophys. Acta 1140, 53–58.

    PubMed  Google Scholar 

  • Jabs, E. W., Thomas, P. J., Bernstein, M., Coss, C., Ferreira, G. C. and Pedersen, P. L. (1994).Hum. Genet. 93, 600–602.

    Article  PubMed  Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1994).J. Bioenerg. Biomembr. 26, 527–535.

    Article  PubMed  Google Scholar 

  • Klingenberg, M. (1981).Nature 290, 449–454.

    Article  PubMed  Google Scholar 

  • Letellier, T., Malgat, M., and Mazat, J. P. (1993).Biochim. Biophys. Acta 1141, 58–64.

    PubMed  Google Scholar 

  • Li, K., Warner, C. K., Hodge, J. A., Minoshima, S., Kudoh, J., Fukuyama, R., Maekawa, M., Shimizu, Y., Shimizu, N., and Wallace, D. C. (1989).J. Biol. Chem. 264, 13998–14004.

    PubMed  Google Scholar 

  • Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R. D., and Garlid, K. D. (1992).J. Biol. Chem. 267, 17983–17989.

    PubMed  Google Scholar 

  • Lui, M. Y., Torgrimson, A., and Colombini, M. (1994).Biochim. Biophys. Acta 1185, 203–212.

    PubMed  Google Scholar 

  • Mannella, C. A. (1992).Trends Biochem. Sci. 17, 315–320.

    Article  PubMed  Google Scholar 

  • McEnery, M. W., Dawson, T. M., Verma, A., Gurley, D., Colombini, M., and Snyder, S. H. (1993).J. Biol. Chem. 268, 23289–23296.

    PubMed  Google Scholar 

  • Nalecz, K. A., Kaminska, J., Nalecz, M. J., and Azzi, A. (1992).Arch. Biochem. Biophys. 297, 162–168.

    Article  PubMed  Google Scholar 

  • Neckelmann, N., Li, K., Wade, R. P., Shuster, R., and Wallace, D. C. (1987).Proc. Natl. Acad. Sci. USA 84, 7580–7584.

    PubMed  Google Scholar 

  • Palmieri, F. (1994).FEBS Lett. 346, 48–54.

    Article  PubMed  Google Scholar 

  • Palmieri, F., Bisaccia, F., Capobianco, L., Dolce, V., Fiermonte, G., Iacobazzi, V., and Zara, V. (1993).J. Bioenerg. Biomembr. 25, 493–501.

    Article  PubMed  Google Scholar 

  • Pande, S. V., and Murthy, M. S. R. (1994).Biochim. Biophys. Acta 1226, 269–276.

    PubMed  Google Scholar 

  • Ruitenbeek, W., Huizing, M., DePinto, V., Thinnes, F. P., Trijbels, J. M. F., Wendel, U., and Sengers, R. C. A. (1996). InProgress in Cell Research (Palmieri, F., ed.), Elsevier. Amsterdam, in press.

    Google Scholar 

  • Samsom, J. F., Barth, P. G., De Vries, J. I. P., Menko, F. H., Ruitenbeek, W., Van Oost, B. A., and Jakobs, C. (1994).Eur. J. Pediatr. 153, 510–516.

    PubMed  Google Scholar 

  • Schapira, A. H. V., Cooper, J. M., Morgan-Hughes, J. A., Landon, D. N., and Clark, J. B. (1990).N. Engl. J. Med. 323, 37–42.

    PubMed  Google Scholar 

  • Scholte, H. R. (1988).J. Bioenerg. Biomembr. 20, 161–192.

    Article  PubMed  Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68, 177–231.

    PubMed  Google Scholar 

  • Shoffner, J. M., and Wallace, D. C. (1994).Annu. Rev. Nutr. 14, 535–568.

    Article  PubMed  Google Scholar 

  • Stadhouders, A. M. (1981). InMitochondria and Muscular Diseases (Busch, H. F.M., Jennekens, F. G. I., and Scholte, H. R., eds.), Mefar B. V., Beetsterzwaag, Neth., pp. 77–88.

    Google Scholar 

  • Stappen, R., and KrÄmer, R. (1994).J. Biol. Chem. 269, 11240–11246.

    PubMed  Google Scholar 

  • Stepien, G., Torroni, A., Chung, A. B., Hodge, J. A., and Wallace, D. C. (1992).J. Biol. Chem. 267, 14592–14597.

    PubMed  Google Scholar 

  • Tager, J. M., Wanders, R. J. A., Groen, A. K., Kunz, W., Bohnensack, R., Küster, U., Letko, G., Böhme, G., Duszynski, J., and Wojtczak, L. (1983).FEBS Lett. 151, 1–9.

    PubMed  Google Scholar 

  • Thinnes, F. P. (1992).J. Bioenerg. Biomembr. 24, 71–75.

    Article  PubMed  Google Scholar 

  • Torroni, A., Stepien, G., Hodge, J. A., and Wallace, D. C. (1990).J. Biol. Chem. 265, 20589–20593.

    PubMed  Google Scholar 

  • Trijbels, J. M. F., Sengers, R. C. A., Ruitenbeek, W., Fischer, J. C., Bakkeren, J. A. J. M., and Janssen, A. J. M. (1988).Eur. J. Pediatr. 148, 92–97.

    PubMed  Google Scholar 

  • Tylor, D. D., and Sutton, C. M. (1984). InMembrane Structure and Function. Vol V (Bittar, E. E., ed.), Wiley, New York, pp. 181–270.

    Google Scholar 

  • Winkelbach, H., Walter, G., Morys-Wortmann, C., Paetzold, G., Hesse, D., Zimmermann, B., Flörke, H., Reymann, S., Stadtmüller, U., Thinnes, F. P., and Hilschmann, N. (1994).Biochem. Med. Metab. Biol. 52, 120–127.

    Article  PubMed  Google Scholar 

  • Yu, W. H., Wolfgang, W., and Forte, M. (1995).J. Biol. Chem. 270, 13998–14006.

    Article  PubMed  Google Scholar 

  • Zimmerberg, J., and Parsegian, V. A. (1986).Nature 323, 36–39.

    Article  PubMed  Google Scholar 

  • Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M. (1994).J. Biol. Chem. 269, 1614–1616.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huizing, M., DePinto, V., Ruitenbeek, W. et al. Importance of mitochondrial transmembrane processes in human mitochondriopathies. J Bioenerg Biomembr 28, 109–114 (1996). https://doi.org/10.1007/BF02110640

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110640

Key words

Navigation