Log in

Cytoplasmic streaming inParamecium

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Certain species ofParamecium demonstrate rotational cytoplasmic streaming, in which most cytoplasmic particles and organelles flow along permanent route, in a constant direction. By means of novel methods of immobilization, observation and recording, some dynamic properties of cytoplasmic streaming have been described. It was found that the velocity profiles of coaxial layers of cytoplasm have a (parabolic) paraboidal shape and the mean output of cytoplasm flow in different examined zones of streaming is constant. As the consequence of randomly distributed elementary propulsion units within the cytoplasm, particles, which serve as markers of movement, exhibit movements of a saltatory nature; this form of movement is seen inParamecium streaming only in cases of error due to polarization of the saltating particles. Interaction of actin filaments and myosin is likely to occur under specific conditions in microcompartments of cytoplasm where local solations are generated eventually leading to contractions which might propagate on gelated neighbouring areas. Places of elementary contractions are scattered. Therefore the motile effect appears as streaming. Rotational cytoplasmic streaming inParamecium may serve as a convenient model for the study of the dynamics and function of cytoplasmic motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., 1971: Fine structure of membranous and microfibrillar systems in the cortex ofParamecium caudatum. J. Cell Biol.49, 1–20.

    PubMed  Google Scholar 

  • —, 1978: Membranes of ciliates: ultrastructure, biochemistry and fusion. In: Membrane fusion, Cell Surface Reviews 5 (Poste, G., Nicolson, G. L., eds.), pp. 657–763. Amsterdam-New York-Oxford: North-Holland Publ. Comp.

    Google Scholar 

  • —,Allen, N. S., 1978 a: Cytoplasmic streaming in amoeboid movement. Ann. Rev. Biophys. Bioeng.7, 469–495.

    Google Scholar 

  • Allen, N. S., Allen, R. D., 1978 b: Cytoplasmic streaming in green plants. Ann. Rev. Biophys. Bioeng.7, 497–526.

    Google Scholar 

  • Allen, R. D., Eckert, R., 1969: A morphological system in ciliates comparable to the sarcoplasmic reticulum transverse system in striated muscle. J. Cell Biol.43, 4a.

    Google Scholar 

  • Andrivon, C., 1970: Preuves de l'existence d'un transport actif de l'ion nickel à travers la membrane cellulaire deParamecium caudatum. Protistologica6, 445–455.

    Google Scholar 

  • —, 1972: The stop** of ciliary movements by nickel salts inParamecium caudatum: the antagonism of K+ and Ca2+ions. A. Protozool.11, 373–386.

    Google Scholar 

  • —, 1974 a: La perméabilité à l'ion nickel chezParamecium: ses rapports avec le renversement ciliaire. Protistologica10, 175–183.

    Google Scholar 

  • —, 1974 b: Régulation de la pénétration du nickel chezParamecium par des enzymes de la membrane cellulaire. Protistologica10, 509–516.

    Google Scholar 

  • —, 1974 c: Inhibition of ciliary movements by Ni2+ ions in triton-extracted models ofParamecium caudatum. Arch. Intr. Phys. Bioch.82, 843–852.

    Google Scholar 

  • Ashton, F. T., 1957: Magnetic studies on cells and protoplasm. Biol. Bull. (Woods Hole)113, 319.

    Google Scholar 

  • Aufderheide, K. J., 1977: Saltatory motility of uninserted trichocysts and mitochondria inParamecium tetraurelia. Science198, 299–300.

    PubMed  Google Scholar 

  • Behnke, O., 1976: Introductory remarks: To move, or not to move, that is the question. In: Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation 3 (Goldman, R.,Pollard, T.,Rosenbaum, J., eds.), pp. 215–216. Cold Spring Harbor Laboratory.

  • Bills, C. E., 1922: Inhibition of locomotion inParamecium and observations on certain structures and internal activities. Biol. Bull.42, 7–13.

    Google Scholar 

  • Boell, E. J., 1942: The effect of respiratory inhibitors on the oxygen consumption ofParamecium calkinsi. Anat. Rec.84, 493–494.

    Google Scholar 

  • Bradly, M. O., 1973: Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci.12, 327–343.

    PubMed  Google Scholar 

  • Braselton, J. P., Bennett, M. D., 1980: Purification of lumicolchicine for use in studies of plant development. Protoplasma103, 105–114.

    Google Scholar 

  • Bray, D., 1979: Cytochalasin action. Nature282, 671.

    PubMed  Google Scholar 

  • Brown, R. H. J., 1940: The protoplasmic viscosity ofParamecium. J. exp. Biol.17, 317–324.

    Google Scholar 

  • Brown, S. S., Spudich, J. A., 1979: Cytochalasin inhibits the rate of elongation of actin filament fragments. J. Cell Biol.83, 657–662.

    PubMed  Google Scholar 

  • Condeelis, J. S., Taylor, D. L., 1977: The contractile basis of ameboid movement. V. The control of gelation, solation and contraction in extracts fromDictyostelium discoideum. J. Cell Biol.74, 901–927.

    Google Scholar 

  • Copeland, M., 1974: The cellular responses to cytochalasin B. A critical review. Cytologia39, 709–727.

    PubMed  Google Scholar 

  • Eckert, R., Brehm, P., 1979: Ionic mechanisms of excitation inParamecium. Ann. Rev. Bioph. Bioeng.8, 353–383.

    Google Scholar 

  • Ehret, C. F., McArdle, E. W., 1974: The structure ofParamecium as viewed from its constituent levels of organization. In:Paramecium, A Current Survey (Wagtendonk, W. J. van, ed.), pp. 263–338. Amsterdam-New York: Elsevier Scientific Publishing Company.

    Google Scholar 

  • —,Powers, E. L., 1959: The cell surface ofParamecium. Inter. Rev. Cytol.8, 97–133.

    Google Scholar 

  • Fetter, D., 1926: Determination of the protoplasmic viscosity ofParamecium by the centrifuge method. J. exp. Zool.44, 279–283.

    Google Scholar 

  • Fisher, G., Kaneshire, E. S., Peters, P. D., 1976: Divalent cation affinity sites inParamecium aurelia. J. Cell Biol.69, 429–442.

    PubMed  Google Scholar 

  • Flanagan, D. J., Warr, J. R., 1978: Colchicine binding of cell extracts from colchicine resistant mutants ofChlamydomonas reinhardii. Exp. Cell Res.116, 474–477.

    PubMed  Google Scholar 

  • Franke, W. W., 1971: Membrane-microtubule-microfilament-relationships in the ciliate pellicle. Cytobiologie4, 307–316.

    Google Scholar 

  • Frey-Wyssling, A., 1948: Submicroscopic morphology of protoplasm and its derivatives, pp. 1–225. New York-Amsterdam-London-Brussels: Elsevier Publishing Company Inc.

    Google Scholar 

  • Geddes, M., Humphrey, G. F., 1951: Glycolysis inParamecium caudatum. Austr. J. exp. Biol.29, 187–193.

    Google Scholar 

  • Gelei, J., 1935: Ni-Infusorien im Dienste der Forschung und des Unterrichtes. Biol. Zbl.55, 57–74.

    Google Scholar 

  • Gilkey, J. C., Jaffe, L. F., Ridgaway, E. B., Reynolds, G. T., 1978: A free calcium wave transverses the activating egg of the medakaOryzias latipes. J. Cell Biol.76, 448–466.

    PubMed  Google Scholar 

  • Hart, J. W., Sabnis, D. D., 1976: Colchicine and plant microtubules: a critical evaluation. Curr. Adv. Pl. Sci.26, 1095–1104.

    Google Scholar 

  • Hauser, M., Hausmann, K., Jockusch, B. M., 1980: Demonstration of tubulin, actin and alfa-actinin by immunofluorescence in the microtubule-microfilament complex of the cytopharyngeal basket of the ciliatePseudomicrothorax dubius. Exp. Cell Res.125, 265–274.

    PubMed  Google Scholar 

  • Hausmann, K., Peck, R. K., 1978: Microtubules and microfilaments as major components of a phagocytic apparatus: the cytopharyngeal basket of the ciliatePseudomicrothorax dubius. Differentiation11, 157–167.

    PubMed  Google Scholar 

  • Heilbrunn, L. V., 1926: The absolute viscosity of protoplasm. J. exp. Zool.44, 255–278.

    Google Scholar 

  • Hellewell, S. B., Taylor, D. L., 1979: The contractile basis of amoeboid movement. VI. The solation-contraction coupling hypothesis. J. Cell Biol.83, 633–648.

    Google Scholar 

  • Hepler, P. K., Palevitz, B. A., 1974: Microtubules and microfilaments. Ann. Rev. Plant Physiol.25, 309–362.

    Google Scholar 

  • Herth, W., Franke, W. W., Vanderwonde, W. J., 1972: Cytochalasin stops tip growth in plants. Naturwissenschaften59, 38–39.

    Google Scholar 

  • Holland, J., Humphrey, G. F., 1953: The metabolism ofParamecium caudatum. II. The effect of respiratory inhibitors. Austr. J. exp. Biol. Med. Sci.31, 299–310.

    Google Scholar 

  • Hosoi, T., 1937: Protoplasmic streaming in isolated pieces ofParamecium. J. Facul. Sci., Sec. IV (Zool)4, 299–305.

    Google Scholar 

  • Hufnagel, L. A., 1969: Cortical structure ofParamecium aurelia. J. Cell Biol.40, 779–801.

    PubMed  Google Scholar 

  • Hyams, J. S., Stibbings, H., 1979: Microtubule associate cytoplasmic transport. In: Microtubules (Roberts, K., Hyams, J. S., eds.), pp. 487–530. New York-Toronto-Sydney-San Francisco: Academic Press.

    Google Scholar 

  • Jahn, T. L., Bovee, E. C., 1969: Protoplasmic movements within cells. Physiol. Rev.49, 793–862.

    PubMed  Google Scholar 

  • Jurand, A., Selman, G. G., 1969: The anatomy ofParamecium aurelia, pp. 1–218. London: Macmillan St. Martin's Press.

    Google Scholar 

  • Kamiya, N., 1950: The rate of the protoplasmic flow in the myxomycete plasmodium. I. Cytologie15, 194–204.

    Google Scholar 

  • —, 1959: Protoplasmic streaming. Protoplasmatologia8 (3a), 1–199. Wien: Springer.

    Google Scholar 

  • —,Kuroda, K., 1956: Velocity distribution of protoplasmic streaming inNitella cells. Bot. Mag. (Tokyo)69, 544–554.

    Google Scholar 

  • Keith, A. D., Snipes, W., 1974: Viscosity of cellular protoplasm. Science183, 666–668.

    PubMed  Google Scholar 

  • Koenuma, A., 1954: Study on cyclosis ofParamecium. J. Shinshu Univ.4, 49–57.

    Google Scholar 

  • —, 1963: The velocity distribution of the cyclosis inParamecium caudatum. Annot. Zool. Jap.36, 66–71.

    Google Scholar 

  • Komnick, H., Stockem, W., Wohlfarth-Bottermann, K. E., 1973: Cell motility: mechanisms in protoplasmic streaming. Inter. Rev. Cytol.34, 169–249.

    Google Scholar 

  • Korn, E. D., 1978: Biochemistry of actomyosin-dependent cell motility. Proc. Nat. Acad. Sci. U.S.A.75, 588–599.

    Google Scholar 

  • —, 1980: Interactions between contractile and cytoskeletal elements and other cell structures. Europ. J. Cell Biol.22, 336.

    Google Scholar 

  • Kretsinger, R. H., 1979: The informational role of calcium in the cytosol. In: Adv, Cyclic Nucl. Res. 11 (Greengard, P., Robinson, G. A., eds.), pp. 1–26. New York: Raven Press.

    Google Scholar 

  • Kuźnicki, L., Sikora, J., 1971: Cytoplasmic streaming withinParamecium aurelia. I. Movements of crystals after immobilization by antiserum. A. Protozool.8, 439–446.

    Google Scholar 

  • — —, 1973 a: Cytoplasmic streaming withinParamecium aurelia. III. The effect of temperature on flow velocity. A. Protozool.12, 59–66.

    Google Scholar 

  • - -, 1973 b: Progress in understanding of the cytoplasmic streaming inParamecium aurelia. In: Progress in Protozoology, IVth inter. Congr. Protozool., pp. 238, Clermont-Ferrand.

  • — —,Fabczak, S., 1972: Cytoplasmic streaming withinParamecium aurelia. II. Cinematographic analysis of the course and reversible cessation of cyclosis. A. Protozool.11, 237–242.

    Google Scholar 

  • Margulis, L., 1973: Colchicine-sensitive microtubules. Inter. Rev. Cyt.34, 333–361.

    Google Scholar 

  • Marsland, D. A., 1943: QuietingParamecium for the elementary student. Science98, 414.

    Google Scholar 

  • Mast, S. O., 1947: The food vacuole inParamecium. Biol. Bull.92, 31–72.

    Google Scholar 

  • Mercer, F., 1960: The submicroscopic structure of the cell. Ann. Rev. Plant Physiol.11, 1–24.

    Google Scholar 

  • Merrill, E. W., 1969: Rheology of blood. Physiol. Rev.49, 863–888.

    PubMed  Google Scholar 

  • Nilsson, J. R., 1980: Effects of dimethyl sulfoxide on ATP content and protein synthesis inTetrahymena. Protoplasma103, 189–200.

    PubMed  Google Scholar 

  • —,Ricketts, T. R., Zeuthen, E., 1973: Effects of cytochalasin B on the cell division and vacuole formation inTetrahymena pyriformis GL. Exp. Cell Res.79, 456–459.

    Google Scholar 

  • Pace, D. M., 1945: The effect of cyanide on respiration inParamecium caudatum andParamecium aurelia. Biol. Bull.89, 76–83.

    Google Scholar 

  • Patterson, D. J., 1978: Membranous sacs associated with cilia ofParamecium. Cytobiologie17, 107–113.

    PubMed  Google Scholar 

  • Perkins, D. L., Babb, S. E., 1977: A thermodynamic model of ameboid locomotion based on the push-pull nature of gel-to-sol interconversions. J. theor. Biol.69, 293–299.

    PubMed  Google Scholar 

  • Pitelka, D. R., 1965: New observations on cortical ultrastructure inParamecium. J. Microscopie4, 373–394.

    Google Scholar 

  • —, 1969: Fibrillar systems in Protozoa. In: Research in Protozoology 3 (Chen, T. T., ed.), pp. 279–388. Oxford-New York: Pergamon Press.

    Google Scholar 

  • Pollard, T. D., Weihing, R. R., 1974: Actin and myosin and cell movement. C. R. C. Critical Rev. Bioch.2, 1–65.

    Google Scholar 

  • Rebhun, L. I., 1964: Saltatory particle movement in cells. In: Primitive Motile Systems in Cell Biology (Allen, R. D., Kamiya, N., eds.), pp. 503–525. New York-London: Academic Press.

    Google Scholar 

  • —, 1972: Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Inter. Rev. Cytol.32, 93–139.

    Google Scholar 

  • Reisner, A. H., Bucholtz, C., 1977: The in vivo effect of dimethyl sulfoxide (DMSO) on protein synthesis and the polyribosome profile inParamecium. J. Cell Physiol.90, 169–178.

    PubMed  Google Scholar 

  • Rosenbaum, J. L., Carlson, K., 1969: Cilia regeneration inTetrahymena and its inhibition by colchicine. J. Cell Biol.40, 415–425.

    PubMed  Google Scholar 

  • Seagull, R. W., Heath, I. B., 1980: The differential effects of cytochalasin B on micro-filament populations and cytoplasmic streaming. Protoplasma103, 231–240.

    Google Scholar 

  • Sibley, J. T., Matthew, D. P., Hanson, E. D., 1977: Subcellular effects of cytochalasin B and dimethylsulfoxide onParamecium aurelia. J. Protozool.24, 595–604.

    PubMed  Google Scholar 

  • Sikora, J., 1975: A new method of locomotion arresting in some ciliates without ciliary immobilization. A. Protozool.13, 421–424.

    Google Scholar 

  • —, 1976: Cytoplasmic streaming inParamecium. 1st Intern. Congr. on Cell Biology, Boston 1976. J. Cell Biol.70, 399.

    Google Scholar 

  • —, 1981 a: Rotational cytoplasmic streaming inParamecium cell. I. General character. Post. Biol. Kom.8, 37–44 (in Polish).

    Google Scholar 

  • —, 1981 b: Rotational cytoplasmic streaming inParamecium cell. II. Dynamic properties. Post. Biol. Kom.8, 45–64 (in Polish).

    Google Scholar 

  • —, 1981c: Rotational cytoplasmic streaming inParamecium cell. III. Effect of modifying agents. Post. Biol. Kom.8, 65–85 (in Polish).

    Google Scholar 

  • Sikora, J., 1981d: Organization of cytoplasmic streaming inParamecium (in press).

  • —,Jurand, A., 1980: Control of cytoplasmic streaming inParamecium by papaverine hydrochloride and ionophore A 23187. Europ. J. Cell Biol.22, 356.

    Google Scholar 

  • -Kuźnicki, L., 1973: Cytoplasmic movements at conjugation ofParamecium aurelia. In: Progress in Protozool, IVth Inter. Congr. Protozool., pp. 380, Clermont-Ferrand.

  • —,Kuźnicki, L., 1975: Cytoplasmic streaming during binary fission and conjugation. J. Protozool.22, 74–75.

    Google Scholar 

  • —,Kuźnicki, L., 1976: Cytoplasmic streaming withinParamecium aurelia. IV. Cyclosis during binary fission and conjugation. A. Protozool.15, 173–178.

    Google Scholar 

  • —,Wasik, A., 1978: Cytoplasmic streaming within Ni2+ immobilizedParamecium aurelia. A. Protozool.17, 389–397.

    Google Scholar 

  • — —,Wasik, A., Allen, R. D., 1979a: The role of single particle saltations inParamecium cytoplasmic streaming. A. Protozool.18, 201.

    Google Scholar 

  • — —,Baranowski, Z., 1979b: Velocity profile of cytoplasmic streaming inParamecium. A. Protozool.18, 203–204.

    Google Scholar 

  • — — —, 1979c: The estimation of velocity distribution profile ofParamecium cytoplasmic streaming. Europ. J. Cell Biol.19, 184–188.

    PubMed  Google Scholar 

  • Sonneborn, T. M., 1970: Methods inParamecium research. In: Methods of Cell Physiology4, pp. 242–335. New York: Academic Press.

    Google Scholar 

  • Szmant, H. H., 1975: Physical properties of dimethyl sulfoxide and its function in biological systems. Ann. N.Y. Acad. Sci.243, 20–23.

    PubMed  Google Scholar 

  • Taylor, E. W., 1965: The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J. Cell Biol.25, 145–160.

    Google Scholar 

  • Taylor, D. L., Condeelis, J. S., 1979: Cytoplasmic structure and contractility in amoeboid cells. Inter. Rev. Cytol.56, 57–144.

    Google Scholar 

  • Tchakhotine, S., 1939: Analyse du mécanisme de la cyclose chez la Paramécie au moyen de la microponcture ultra-violette. Soc. Biol.130, 738–740.

    Google Scholar 

  • Tołłoczko, B., 1977: Endocytosis inParamecium. III. Effect of cytochalasin B and colchicine. A. Protozool.16, 185–193.

    Google Scholar 

  • —, 1980: Effect of colchicine on food ingestion inDileptus anser. A. Protozool.19, 111–120.

    Google Scholar 

  • Tonomura, Y., Yoshimura, J., 1962: Binding of p-chloromercuribenzoate to actin. J. Biochem.51, 259–266.

    PubMed  Google Scholar 

  • Toyohara, A., Shigenaka, Y., Mohri, H., 1978: Microtubules in protozoan cells. III. Ultra-structural changes during disintegration and reformation of heliozoan microtubules. J. Cell Sci.32, 87–98.

    PubMed  Google Scholar 

  • Tucker, J. B., 1972: Microtubule-arms and propulsion of food particles inside a large feeding organelle in the ciliatePhascolodon vorticella. J. Cell Sci.10, 883–903.

    PubMed  Google Scholar 

  • —, 1978: Endocytosis and streaming of highly gelated cytoplasm alongside rows of armbearing microtubules in the ciliateNassula. J. Cell Sci.29, 213–232.

    PubMed  Google Scholar 

  • Vivier, E., 1974: Morphology, taxonomy and general biology of the genusParamecium. In:Paramecium, A Current Survey (Wagtendonk, W. J., van, ed.), pp. 1–89. Amsterdam-New York: Elsevier Sci. Publ. Comp.

    Google Scholar 

  • Wasik, A., Sikora, J., 1980: Effect of cytochalasin B and colchicine on cytoplasmic streaming inParamecium bursaria. A. Protozool.19, 103–110.

    Google Scholar 

  • - - 1981: Acceleration of cytoplasmic streaming velocity by external stimuli inParamecium bursaria (in press).

  • Wichterman, R., 1940: Cytogamy: a sexual process occurring in living joined pairs ofParamecium caudatum and its relation to other sexual phenomena. J. Morph.66, 423–451.

    Google Scholar 

  • Williamson, R. E., 1975: Cytoplasmic streaming inChara: a cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci.17, 655–668.

    PubMed  Google Scholar 

  • Wilson, L., Bryan, J., 1974: Biochemical and pharmacological properties of microtubules. In: Adv. Cell and Mol. Biol. 3 (DuPraw, E. J., ed.), pp. 22–72. New York-San Francisco-London: Academic Press.

    Google Scholar 

  • —,Friedkin, M., 1966: The biochemical events of mitosis. I. Synthesis and properties of colchicine labeled with tritium in its acetyl moiety. Biochem.5, 2463–2468.

    Google Scholar 

  • Wolosewick, J. J., Porter, K. R., 1979: Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J. Cell Biol.82, 114–139.

    PubMed  Google Scholar 

  • Wunderlich, F., Heumann, H.-G., 1974:In vivo reassembly of microtubules in the presence of intracellular colchicine. Cytobiologie10, 140–151.

    Google Scholar 

  • Wyroba, E., 1981: Alveolar system inParamecium. I. Trap** of polycationic dye as a result of membrane impairment (in press).

  • Yagi, K., 1961: The mechanical and colloidal properties ofAmoeba proteus and their relations to the mechanism of amoeboid movement. Comp. Biochem. Physiol.3, 73–91.

    PubMed  Google Scholar 

  • Yamada, K., 1969: A comparative study on the cyclosis inParamecium. J. Sci. Hirosh. Univ., Ser. B, Div. 1,22, 1–153.

    Google Scholar 

  • —, 1970: Influence of specific SH-blocking reagent, p-chloro-mercuribenzoate on cyclosis inParamecium. J. Sci. Hirosh. Univ., Ser. B, Div. 1,23, 1–15.

    Google Scholar 

  • —, 1974a: Effects of cyanide on cyclosis and vacuolar output of water inParamecium caudatum. J. Sci. Hirosh. Univ., Ser. B, Div. 1,25, 225–242.

    Google Scholar 

  • —, 1974b: Effects of 2,4-dinitrophenol on cyclosis and vacuolar output of water inParamecium caudatum. J. Sci. Hirosh. Univ., Ser. B, Div. 1,25, 243–257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, J. Cytoplasmic streaming inParamecium . Protoplasma 109, 57–77 (1981). https://doi.org/10.1007/BF01287630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01287630

Keywords

Navigation