Log in

On symbolic manipulation and code generation of a hybrid three-dimensional solid element

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A symbolic procedure is utilized to derive the analytical expressions of the component matrices resulting to the closed-form integration of a stiffness matrix of a hybrid finite element. In order to alleviate the expression growth problem, we employ special techniques, including the use of symmetry conditions, pattern search, and introduction of intermediate variables, so that the final form of the derived stiffness matrix is suitable for coding implementation. Application of the symbolic procedure is made on a hybrid three-dimensional 8-node solid element. The same procedure is equally applicable to other types of hybrid elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MACSYMA Reference Manual (1984) Version 10. The MATHLAB Group, Laboratory for Computer Science, MIT

  2. Gunderson, R.H.; Cetiner, A. (1971) Element stiffness matrix generator. J. Struct. Div., ASCE 97, 363–375

    Google Scholar 

  3. Luft, W.; Roesset, J.M.; Conner, J.J. (1971) Automatic generation of finite element matrices. J. Struct. Div., ASCE 97, 349–362

    Google Scholar 

  4. Jos, R.G. (1972) Generalization of plate finite elements to shells. J. Eng. Mech. Div., ASCE 98, 385–400, April

    Google Scholar 

  5. Anderson, C.M.; Noor, A.K. (1975) A Computerized Symbolic Integration Technique for Development of Triangular and Quadrilateral Composite Shallow-Shell Finite Elements.” NASA TN D-8067

  6. Peterson, P. (1977) On computer-aided analytic element analysis and the similarities of tetrahedron elements. Int. J. Numer. Meth. Eng. 11, 611–622

    Google Scholar 

  7. Cecchi, M.M.; Lami, C. (1977) Automatic generation of stiffness matrices for finite element analysis. Int. J. Num. Meth. Eng. 11, 396–400

    Google Scholar 

  8. Noor, A.K.; Andersen, C.M. (1977) Computerized symbolic manipulation in structural mechanics-progress and potential. Comput. Struct. 10, 95–118

    Google Scholar 

  9. Noor, A.K.; Andersen, C.M. (1977) Mixed isoparametric finite element models of laminated composite shells. Comput. Meth. Appl. Mech. Eng. 11, 255–280

    Google Scholar 

  10. Anderson, C.M. (1978) Evaluation of integrals for a ten-node isoparametric tetrahedral finite element. Comput. Meth. Appl. Eng. 5, 297–320

    Google Scholar 

  11. Noor, A.K.; Andersen, C.M. (1981) Computerized symbolic manipulation in nonlinear finite element analysis. Comput. Struct. 1, 9–40

    Google Scholar 

  12. Korncoff, A.R.; Fenves, S.J. (1979) Symbolic generation of finite element stiffness matrices. Comput. Struct. 10, 119–124

    Google Scholar 

  13. Wang, P.S.; Chang, T.Y.P.; Van Hulzer, J.A. (1984) Code generation and optimization for finite element analysis (Eds. G. Goos; J. Hartmanis). EUROSAM 84 Conference Proceedings, New York: Springer-Verlag, LNCS Series, July

    Google Scholar 

  14. Chang, T.Y.P.; Saleeb, A.F.; Wang, P.S.; Tan, H.Q. (1986) On the symbolic manipulation and code generation for elasto-plastic material matrices. Eng. Comput. 1, 205–215

    Google Scholar 

  15. Wang, P.S.; Tan, H.Q.; Chang, T.Y.P.; Saleeb, A.F. (1986) The code generation for hybrid-mixed mode formulation in finite element analysis. ACM SYMSAC-86 Proceedings, Waterloo, Canada

  16. Wang, P.S. (1986) FINGER: A symbolic system for automatic generation of numerical programs in finite element analysis. J. Symbol. Comput. 2, 305–316

    Google Scholar 

  17. Tan, H.Q. (1989) Symbolic derivation of equations for mixed formulation in finite element analysis. Comput. Math. E. Kaltofen (ed.), Springer-Verlag New York, 289–298

    Google Scholar 

  18. Tan, H.Q. (1989) Integration of symbolic and numerical computations in finite element analysis. In: IMACS Transactions on Scientific Computing, Vol. 1.2: Numerical and Applied Mathematics. Basel, Switzerland: J.C. Baltzer AG, Scientific Publishing Co. 641–645

    Google Scholar 

  19. Chang, T.Y.P.; Tan, H.Q.; Zheng, D.; Yuan, M.W. (1990) Application of symbolic method to hybrid/mixed finite elements and computer implementation. Comput. Struct. 35:4, 293–299

    Google Scholar 

  20. Pian, T.H.H. (1964) Derivation of element stiffness matrices by assumed stress distribution. AIAA J. 2, 1333–1336

    Google Scholar 

  21. Pian, T.H.H. Cheng, D.P.; Kang, D., (1983) A new formulation of hybrid/mixed finite element. Comput. Struct. 16, 81–87

    Google Scholar 

  22. Pian, T.H.H. (1985) Finite element methods based on consistently assumed stresses and displacements. Finite Elem. Analy. Des. 1, 131–140

    Google Scholar 

  23. Spilker, R.L. (1982) Invariant 8-node hybrid stress elements for thin and moderately thick plates. Intro. J. Num. Meth. Eng. 18, 1153–1178

    Google Scholar 

  24. Pian, T.H.H.; Kang, D.; Wang, C. (1986) Hybrid plate elements based on balanced stresses and displacements. In: State-of-the-Art on Finite Element Methods in Plate and Shell Structures, Vol. 1, Element Technology (Eds. T.J.R. Hughes; E. Hinton). Swansea, UK: Pineridge Press International, pp. 244–265

    Google Scholar 

  25. Lee, S.W.; Dai, C.C.; Yeom, C.H. (1985) A triangular finite element for thin plates and shells. Int. J. Num. Meth. Eng. 21, 1813–1831

    Google Scholar 

  26. Saleeb, A.F.; Chang, T.Y.P.; Graf, W. (1987) A quadrilateral shell element using a mixed formulation. Comput. Struct. 26, 787–803

    Google Scholar 

  27. Kang, D.S.; Pian, T.H.H. (1988) A 20-DOF hybrid stress general shell element. Comput. Struct. 30, 789–794

    Google Scholar 

  28. Tong, P. (1969) An assumed stress hybrid finite element method for an incompressible and near-incompressible material. Int. J. Solids Struct. 5, 455–461

    Google Scholar 

  29. Pian, T.H.H.; Tong, P. (1986) Relations between incompatible displacement model and hybrid stress model. Int. J. Num. Meth. Eng. 22, 173–181

    Google Scholar 

  30. Pian, T.H.H.; Wu, C.C. (1988) A rational approach for choosing stress terms for hybrid finite element formulations. Int. J. Num. Meth. Eng. 26, 2331–2343

    Google Scholar 

  31. Hughes, T.J.R. (1978) The Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall

    Google Scholar 

  32. Chang, T.Y.P. (1988) NFAP—A general purpose nonlinear finite element analysis program for static and dynamic loadings. User Manual, Department of Civil Engineering, University of Akron, Akron, OH, October 1

    Google Scholar 

  33. Belytschko, T.; Liu, W.K.; Ong, J.S.-J.; Lam, D. (1985) Implementation and application of a 9-node lagrange shell element with spurious mode control. Comput. Struct. 20, 121–128

    Google Scholar 

  34. Stanley, G.M.; Park, K.C.; Hughes, T.J.R. (1986) Continuum-based resultant shell elements. In:Finite Element Methods for Plate and Shell Structures, Vol. 1: Element Technology (Ed. T.J.R. Hughes, E. Hinton). Swansea, UK: Pineridge Press International, pp. 1–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H.Q., Chang, T.Y.P. & Zheng, D. On symbolic manipulation and code generation of a hybrid three-dimensional solid element. Engineering with Computers 7, 47–59 (1991). https://doi.org/10.1007/BF01208345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208345

Keywords

Navigation