Log in

Nonlinear asymptotic theory of hypersonic flow past a circular cone

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The hypersonic small-disturbance theory is reexamined in this study. A systematic and rigorous approach is proposed to obtain the nonlinear asymptotic equation from the Taylor-Maccoll equation for hypersonic flow past a circular cone. Using this approach, consideration is made of a general asymptotic expansion of the unified supersonic-hypersonic similarity parameter together with the stretched coordinate. Moreover, the successive approximate solutions of the nonlinear hypersonic smalldisturbance equation are solved by iteration. Both of these approximations provide a closed-form solution, which is suitable for the analysis of various related flow problems. Besides the velocity components, the shock location and other thermodynamic properties are presented. Comparisons are also made of the zeroth-order with first-order approximations for shock location and pressure coefficient on the cone surface, respectively. The latter (including the nonlinear effects) demonstrates better correlation with exact solution than the zeroth-order approximation. This approach offers further insight into the fundamental features of hypersonic small-disturbance theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

speed of sound

H :

unified supersonic-hypersonic similarity parameter,\(\sqrt {(M_\infty ^2 - 1)} \delta\)

K δ :

hypersonic similarity parameter, Mδ

M :

freestream Mach number

P :

pressure

T :

temperature

S :

entropy

u, v :

radial, polar velocities

V :

freestream velocity

β:

shock angle

δ:

cone angle

ϱ:

density

ε:

density ratio, ϱ/ϱ(β)

γ:

ratio of specific heats

θ:

polar angle

\(\bar \theta\) :

stretched polar angle, θ/δ

α(δ), σ(δ), λ(δ):

gage functions

References

  1. Busemann, A.: Drücke auf kegelförmige Spitzen bei Bewegung mit Überschallgeschwindigkeit. ZAMM9, 496–498 (1929).

    Google Scholar 

  2. Busemann, A.: Infinitesimale kegelige Überschallströmung. Schriften der Deutschen Akademie der Luftfahrtforschung, 7B,3, 105–122, (1943).

    Google Scholar 

  3. Tsien, H. S.: Similarity laws of hypersonic flows J. Math. Phys.25, 247–251, (1946).

    Google Scholar 

  4. Hayes, W. D.: On hypersonic similitude. Q. Appl. Math.5, 105–106 (1947).

    Google Scholar 

  5. Oswatitsch, K.: Similarity law for hypersonic flow. Tech. Note. No. 16, Institutionen för Flygteknik, Kungl. Tekniska Högskolan, Stockholm, 1950.

    Google Scholar 

  6. Oswatitsch K.: Ähnlichkeitsgesetze für Hyperschallströmung. ZAMP2, 249–264, 1951.

    Google Scholar 

  7. Chyernyi, G. G.: Introduction to hypersonic flow (translated from Russian by R. F. Probstein), pp. 18–19. New York: Academic Press, 1961.

    Google Scholar 

  8. Zierep, J.: Über den Einfluß von Wärmezufuhr bei Hyperschallströmungen. Acta Mech.2, 217–230 (1966).

    Google Scholar 

  9. Zierep, J.: Theoretical gasdynamics (translated by T. K. Bose and S. Santhakumar), pp. 466–473. New York: Springer, 1978.

    Google Scholar 

  10. Van Dyke, M. D.: The combined supersonic-hypersonic similarity rule. J. Aeron. Sci.18, 499–509 (1951).

    Google Scholar 

  11. Van Dyke, M. D.: A study of hypersonic small-disturbance theory. NACA TN-3173, (1954).

  12. Taylor, G. I., Maccoll, J. W.: The air pressure on cone moving at high speeds. Proc. R. Soc. London. Ser.A 139, 278–311 (1933).

    Google Scholar 

  13. Pottsepp, L.: Inviscid hypersonic flow over unyawed circular cones. J. Aerospace Sci27, 558–559 (1960).

    Google Scholar 

  14. Rasmussen, M. L.: On hypersonic flow past an unyawed cone. AIAA J.5, 1495–1497 (1967).

    Google Scholar 

  15. Kopal, Z.: Tables of supersonic flow around cones. Mass. Inst. of Tech., Center of Analysis, Dept. Elect. Engr., Rep 1 (1947).

  16. Sims, J. M.: Tables for supersonic flow around right circular cones at zero angle of attack. Aerodynamics Analysis Branch, Aero-Ballistics Laboratory, Report No. DA-TR-11-60. Mar. (1960).

  17. Lin, S. C.: Aerodynamics of lifting bodies with combined transverse and longitudinal curvature. Ph. D. Dissertation, AMNE, University of Oklahoma, 1987.

  18. Feng, C. K., Kao, P. L.: Second-order hypersonic solution of the boundary-value problem of Prandtl-Meyer flow, pp. 1047–1056. The 14th National Conference on Theoretical and Applied Mechanics, Taiwan, R.O.C., 1990.

  19. Feng, C. K., Kao, P. L.: The similarity solution of the boundary-value problem of hypersonic centered expansion and compression waves with its application, pp. 479–488, Proceedings of 34th Aero. & Astro. Conference, AASROC, 1992.

  20. Rasmussen, M. L.: Hypersonic flow. New York: John Wiley & Sons, 1994.

    Google Scholar 

  21. Kevorkian, J. and Cole, J. D.: Perturbation methods in applied mathematics. New York: Springer, 1981.

    Google Scholar 

  22. Liepmann, H. W., Roshko, A.: Elements of gasdynamics. New York: John Wiley, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, Y.T., Lin, S.C. & Feng, C.K. Nonlinear asymptotic theory of hypersonic flow past a circular cone. Acta Mechanica 130, 1–15 (1998). https://doi.org/10.1007/BF01187039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187039

Keywords

Navigation