Log in

A physiological pharmacokinetic model for morphine disposition in the pregnant rat

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A physiological model was used to examine the disposition of morphine in the pregnant rat. In the model was incorporated an expression of both a linear and a nonlinear binding term of morphine to the maternal muscular tissue. Furthermore, the experimental data suggested that a diffusion-limited transport of morphine occurred across the placenta. Morphine showed a relatively high partition into the maternal kidney and muscle tissues. The concentration of morphine in the foetus was about 1.5 times higher than that of the maternal plasma, whereas the foetal brain concentration was about 4 times higher than that of the maternal plasma. The influence on morphine disposition by changes in both the tissue binding of the maternal muscle and the placental plasma flow was explored by model simulations. Due to the diffusionlimited transport of morphine across the placenta, a change in the placental plasma flow would only have an effect on the concentration-time profile of morphine in the foetal tissues if the plasma flow approached and became less than the diffusion clearance across the placenta. An increase in the partition of morphine into the maternal muscle produced an increase in the terminal half-life in all tissues including the foetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Sanner and L. A. Woods. Comparative distribution of tritium-labelled dihydromorphine between maternal and fetal rats.J. Pharmacol. Exp. Ther. 148:176–184 (1965).

    CAS  PubMed  Google Scholar 

  2. G. F. Blane and H. E. Dobbs. Distribution of tritium-labelled etorphine (M99) and dihydromorphine in pregnant rats at term.Br. J. Pharmacol. Chemother. 30:166–172 (1967).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. S. Y. Yen and L. A. Woods. Dihydromorphine in the tolerant and non-tolerant rat.J. Pharmacol. Exp. Ther. 174:9–12 (1970).

    Google Scholar 

  4. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, Ill., 1975, pp. 92–96.

  5. P. O. Edlund. Determination of opiates in biological samples by glass-capillary gas chromatography with electron capture detection.J. Chromatogr. 206:109–116 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. C. M. Metzler, G. L. Elfring, and A. J. McEwen.NONLIN. The Upjohn Co., Kalamazoo, Mich., 1974.

    Google Scholar 

  8. B. Dahlström, J. Jonsson, and L. Paalzow. Morphine metabolism in the perfused rat liver.Acta Pharmacol. Toxicol. 39:46–52 (1976).

    Article  Google Scholar 

  9. K. J. Himmelstein and R. J. Lutz. A review of the application of physiologically based pharmacokinetic modelling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  10. B. Dahlström and L. Paalzow. Pharmacokinetics of morphine in plasma and discrete areas of the brain.J. Pharmacokin. Biopharm. 3:293–302 (1975).

    Article  Google Scholar 

  11. B. Dahlström and L. Paalzow. First-pass metabolism of morphine and its pharmacokinetic interpretation.J. Pharmacokin. Biopharm. 6:521–527 (1978).

    Article  Google Scholar 

  12. B. Dahlström, P. Bolme, H. Feychting, G. Noack, and L. Paalzow. Pharmacokinetics of morphine in children.Clin. Pharmacol. Ther. 26:354–365 (1979).

    PubMed  Google Scholar 

  13. B. Fichtl and H. Kurz. Binding of drugs to human muscle.Eur. J. Clin. Pharmacol. 14:335–340 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. C. N. Chen and J. D. Andrade. Pharmacokinetic model for simultaneous determination of drug levels in organs and tissues.J. Pharm. Sci. 65:717–724 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. M. L. Kirby. Morphine in fetuses after maternal injection: increasing concentration with advancing gestational age.Proc. Soc. Exp. Biol. Med. 162:287–290 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. C. A. Guyton.Textbook Of Medical Physiology, 5 ed. W. B. Saunders, Philadelphia, 1975, p. 251.

    Google Scholar 

  17. H. J. Kupferberg and E. L. Way. Pharmacological basis for the increased sensitivity of the newborn rat to morphine,J. Pharmacol. Exp. Ther. 141:105–112 (1963).

    CAS  PubMed  Google Scholar 

  18. P. T. Henderson. Metabolism of drugs in rat liver during the perinatal period.Biochem. Pharmacol. 20:1225–1232 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. B. A. Berkowitz. The relationship of pharmacokinetics to pharmacological activity; morphine, methadone and naloxone.Clin. Pharmacokin. 1:219–230 (1976),

    Article  CAS  Google Scholar 

  20. M. Gibaldi and J. R. Koup. Pharmacokinetic concepts-drug binding, apparent volume of distribution and clearance.Eur. J. Clin. Pharmacol. 20:299–305 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. B. L. Mirkin.Perinatal Pharmacology and Therapeutics. Academic Press, London, 1976, pp. 15–25.

    Google Scholar 

  22. M. A. Heymann. Interrelation of fetal circulation and the placental transfer of drugs.Fed. Proc. 31:44–47 (1972).

    CAS  PubMed  Google Scholar 

  23. L. Jansky and J. S. Hart. Cardiac output and organ bloodflow in warm- and cold-acclimated rats exposed to cold.Can. J. Physiol. Pharmacol. 46:653–659 (1968).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Lundgren, K. Karlsson, and U. Ljungblad. Circulatory changes during pregnancy in spontaneously and renal hypertensive rats.Clin. Sci. 57:337–339 (1979).

    Google Scholar 

  25. S. F. Brunk and M. Delle. Morphine metabolism in man.Clin. Pharmacol. Ther. 16:51–57 (1974).

    CAS  PubMed  Google Scholar 

  26. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielsson, J.L., Paalzow, L.K. A physiological pharmacokinetic model for morphine disposition in the pregnant rat. Journal of Pharmacokinetics and Biopharmaceutics 11, 147–163 (1983). https://doi.org/10.1007/BF01061846

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061846

Key words

Navigation