Log in

Effects of pre-weaning undernutrition and post-weaning rehabilitation on polyphosphoinositide pools in rat brain regions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to assess the effects of undernutrition during the pre-weaning period on polyphosphoinositide (PolyPI) pools in rat cerebral cortex, brain stem, and cerebellum, dams were fed 5% (L) or 22% (L+) protein diets from birth to weaning and the pups were used at this age for analyses. To examine rehabilitation post-weaning, L and L+ pups were fed 22% protein diets (P+) for an additional six week period. Rats were decapitated and the dissection begun either immediately (“0 min” samples) or 10 min later (10 min samples). Body and tissue weights, and cerebroside levels were determined in addition to PolyPI concentrations. In brain the extent of disappearance of PolyPI during the 10 min post-mortem period paralleled the content of gray matter: cerebral cortex > cerebellum > brain stem in all groups regardless of diet. Levels of PtdIns4P and PtdIns4,5P2 were decreased by 40% and 70% respectively in cerebral cortex of L “0 min” samples. Deficits of both lipids in brain stem and cerebellum were 40–50%. In the L 10 min samples, deficits were 20–30% in all three regions as compared with L+ 10 min levels, indicating the presence of a portion of both lipids affected only moderately by nutritional insufficiency. The effects on this relatively inert pool, much of it localized in myelin, were reversed on nutritional rehabilitation. The Poly PI pool lost post-mortem in L+ brain regions was practically absent in L brain regions and was not restored in L P+ animals. Thus, this study indicates that a metabolically labile pool, primarily located in gray matter structures, is more sensitive to nutritional deprivation during the pre-weaning period than the more stable pool. The precise role and function of these pools remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eichberg, J. andDawson, R. M. C. 1965. Polyphosphoinositides in myelin. Biochem. J. 96:644–650.

    PubMed  Google Scholar 

  2. Eichberg, J., Hauser, G., andShein, H. M. 1971. Polyphosphoinositides in normal and neoplastic rodent astrocytes. Biochem. Biophys. Res. Commun. 45:43–50.

    PubMed  Google Scholar 

  3. Hauser, G., Eichberg, J., andGonzalez-Sastre F. 1971. Regional distribution of polyphosphoinositides in rat brain. Biochim. Biophys. Acta 248:87–95.

    PubMed  Google Scholar 

  4. Gonzalez-Sastre, F., Eichberg, J., andHauser, G. 1971. Metabolic pools of polyphosphoinositides in rat brain. Biochim. Biophys. Acta 248:96–104.

    PubMed  Google Scholar 

  5. Eichberg, J., andHauser, G. 1973. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim. Biophys. Acta 326:210–223.

    PubMed  Google Scholar 

  6. Deshmukh, D. S., Kuizon, S., Bear, W. D., andBrockerhoff, H. 1980. Distribution of phosphoinositides among subfractions of rat brain myelin. Lipids 15:14–18.

    PubMed  Google Scholar 

  7. Uma, S., andRamakrishnan, C. V. 1983. Studies on polyphosphoinositides in develo** rat brain. J. Neurochem. 40:914–916.

    PubMed  Google Scholar 

  8. Deshmukh, D. S., Bear, W. D., andBrockerhoff, H. 1978. Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin. J. Neurochem. 30:1191–1193.

    PubMed  Google Scholar 

  9. Deshmukh, D. S., Kuizon, S., Bear, W. D., andBrockerhoff, H. 1982. Polyphosphoinositide mono- and diphosphoesterases of three subfractions of rat brain myelin. Neurochem. Res. 7:617–626.

    PubMed  Google Scholar 

  10. Sheltawy, A., andDawson, R. M. C. 1969. The deposition and metabolism of polyphosphoinositides in rat and guinea-pig brain during development. Biochem. J. 111:147–155.

    PubMed  Google Scholar 

  11. Birnberger, A. C., andEliasson, S. G. 1970. Experimental ischemia and polyphosphoinositide metabolism. Neurology 20:356–360.

    PubMed  Google Scholar 

  12. Downes, P., andMichell, R. H. 1982. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Lipids in search of a function. Cell Calcium 3:467–502.

    PubMed  Google Scholar 

  13. Abdel-Latif, A. A. 1983. Metabolism of phosphoinositides. Pages 91–131,in Lajtha A. (ed.), Handbook of Neurochemistry, Vol. 3, second edition, Plenum Press, New York.

    Google Scholar 

  14. Berridge, M. J. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360.

    PubMed  Google Scholar 

  15. Hokin, L. E. 1985. Receptors and phosphoinositide-generated second messengers. Ann. Rev. Biochem. 54:204–235.

    Google Scholar 

  16. Hirasawa, K. andNishizuka, Y. 1985. Phosphatidyl inositol turnover in receptor mechanism and signal transduction. Ann. Rev. Pharmacol. Toxicol. 25:147–170.

    Google Scholar 

  17. Dickerson, J. W. T., andJarvis, J. 1970. The effects of undernutrition and rehabilitation on the growth and chemical composition of the cerebellum, brain stem and forebrain of the rat. Proc. Nutr. Soc. 27:4A-5A.

    Google Scholar 

  18. Rajakakshmi andNakhasi, H. L. 1974. Effects of post-weaning protein deficiency on lipid composition in different regions of the brain in rats. Ind. J. Biochem. Biophys. 11:307–308.

    Google Scholar 

  19. Reddy, P. V. andSastry, P. S. 1979. Studies on neurotransmitter stimulated phospholipid metabolism with cerebral tissue suspensions and possible biochemical correlates of synaptogenesis in normal and undernourished rats. Brain Res. 168:287–298.

    PubMed  Google Scholar 

  20. Reddy, T. S., Rajalakshmi, R. andRamakrishnan, C. V. 1982. Effects of nutritional rehabilitation on the content and lipid composition of brain gray and white matter of neonatally undernourished rats. J. Neurochem. 39:1297–1301.

    PubMed  Google Scholar 

  21. Uma, S., andRamakrishnan, C. V. 1983. Effects of preweaning undernutrition and continued postweaning undernutrition or nutritional rehabilitation of polyphosphoinositides in rat brain. J. Neurochem. 40:1026–1029.

    PubMed  Google Scholar 

  22. Hauser, G., andSwaminathan, U. 1982. Polyphosphoinositide pools in brain areas of protein-deprived weanling rats. Trans. Am. Soc. Neurochem. 13:150.

    Google Scholar 

  23. Hauser, G., andAnanth, U. 1983. Polyphosphoinositide pools in brain areas of undernourished and rehabilitated rats. J. Neurochem. 41 (Suppl):S-133.

    Google Scholar 

  24. Pappu, A., andHauser, G. 1981. Alterations of phospholipid metabolism in rat cerebral cortex mince induced by cationic amphiphilic drugs. J. Neurochem. 37:1006–1014.

    PubMed  Google Scholar 

  25. Rouser, G., Siakotos, A. W., andFleischer, S. 1966. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86.

    Google Scholar 

  26. Jungalwala, F. B., Hayes, L., andMcCluer, R. H. 1977. Determination of less than a nanomole of cerebrosides by high performance liquid chromatography with gradient elution analysis. J. Lipid Res. 18:285–292.

    PubMed  Google Scholar 

  27. Lewin, E., andHess, H. H. 1965. Intralaminar distribution of cerebrosides in human frontal cortex. J. Neurochem. 12:213–220.

    PubMed  Google Scholar 

  28. Norton, W. T. 1981. Formation, structure and biochemistry of myelin. Pages 63–92,in Siegel, G. J., Albers, R. W., Agranoff, B. W., andKatzman, R. (eds.) Basic Neurochemistry, third edition, Little, Brown and Company, Boston.

    Google Scholar 

  29. Muller, A. J., andCox, W. M. 1946. The effect of changes in diet on the volume and composition of rat milk. J. Nutr. 31:249–259.

    Google Scholar 

  30. Venkatachalam, P., andRamanathan, K. S. 1964. Effect of protein deficiency during gestation and lactation on body weight and composition of offspring. J. Nutr. 103:213–217.

    Google Scholar 

  31. Nakhasi, H. L., Toews, A. D., andHorrocks, L. A. 1975. Effects of a postnatal protein deficiency on the content and composition of myelin from brains of weanling rats. Brain Res. 83:176–179.

    Google Scholar 

  32. Rajalakshmi, R., Kulkarni, A. B., andRamakrishnan, C. V. 1974. Effects of preweaning and post-weaning undernutrition on acetylcholine levels in rat brain. J. Neurochem. 23:119–121.

    PubMed  Google Scholar 

  33. Culley, W. J., andMertz, E. T. 1965. Effect of restricted food intake on growth and composition of preweaning rat brain. Proc. Soc. Exp. Biol. Med. 118:233–235.

    PubMed  Google Scholar 

  34. Reddy, P. V. andSastry, P. S. 1978. Effects of undernutrition on the metabolism of phospholipids and gangliosides in develo** rat brain. Br. J. Nutr. 40:403–410.

    PubMed  Google Scholar 

  35. Soukup, J. F., Friedel, R. O., andSchanberg, S. M. 1978. Microwave irradiation fixation for studies of polyphosphoinositide metabolism in brain. J. Neurochem. 30:635–637.

    PubMed  Google Scholar 

  36. Soukup, J. F., Friedel, R. O., andSchanberg, S. M. 1978. Cholinergic stimulation of polyphosphoinositide metabolism in brain in vivo. Biochem. Pharmacol. 27:1239–1243.

    PubMed  Google Scholar 

  37. Hauser, G., andEichberg, J. 1973. Improved conditions for the preservation and extraction of polyphosphoinositides. Biochim. Biophys. Acta 326:201–209.

    PubMed  Google Scholar 

  38. Cragg, B. G. 1972. The development of cortical synapses during starvation in the rat. Brain 95:143–150.

    PubMed  Google Scholar 

  39. Cordero, M. E., Diza, G., andAraya, J. 1976. Neocortex development during severe malnutrition in the rat. Am. J. Clin. Nutr. 29:358–365.

    PubMed  Google Scholar 

  40. Pysh, J. J., Perkins, R. E., andBeck, L. S. 1979. The effect of postnatal undernutrition and the development of mouse Purkinje cell dendritic tree. Brain Res. 163:165–170.

    PubMed  Google Scholar 

  41. Hammer, R. P., Jr. 1981. The influence of pre- and postnatal undernutrition on the develo** brain stem reticular core, a quantitative Golgi study. Dev. Brain Res. 227:191–201.

    Google Scholar 

  42. Gambetti, P., Gambetti, A. L., Rizzute, N., Shafer, B., andPfaff, L. 1974. Synapses and malnutrition: Quantitative ultrastructural study of rat cerebral cortex. Exp. Neurol. 43:464–473.

    PubMed  Google Scholar 

  43. Shoemaker, W. J., andBloom, F. E. 1977. Effect of undernutrition on brain morphology. Pages 147–192,in Wurtman, R. L. andWurtman J. J. (eds.), Nutrition and the Brain, Vol. 2, Raven Press, New York.

    Google Scholar 

  44. Hammer, R. P., Jr., andVan Marthens, E. 1981. Morphological development of the brain stem reticular core in prenatally undernourished rats. Dev. Brain Res. 227:203–212.

    Google Scholar 

  45. Wiggins, R. C., andFuller, G. N. 1978. Early postnatal starvation causes lasting brain hypomyelination. J. Neurochem. 30:1231–1237.

    PubMed  Google Scholar 

  46. Reddy, P. V., Das, A., andSastry, P. S. 1979. Quantitative and compositional changes in myelin of undernourished and protein malnourished rat brain. Brain Res. 161:227–235.

    PubMed  Google Scholar 

  47. Fox, J. H., Fishman, M. A., Dodge, P. R., andPrensky, A. L. 1972. The effects of malnutrition on human central nervous system myelin. Neurology 22:1213–1216.

    PubMed  Google Scholar 

  48. Krigman, M. R., andHogan, E. L. 1976. Undernutrition in the develo** rat: Effect upon myelination. Brain Res. 107:239–255.

    PubMed  Google Scholar 

  49. Wiggins, R. C. 1982. Myelin development and nutritional insufficiency. Brain Res. Rev. 4:151–175.

    Google Scholar 

  50. Culley, W., Yuan, L., andMertz, E. 1966. Effect of food restriction and age on rat brain phospholipid levels. Fed. Proc. 25:674.

    Google Scholar 

  51. Simons, S. D., andJohnston, P. V. 1976. Prenatal and postnatal protein restriction in the rat: Effect on some parameters related to brain development and prospects for rehabilitation. J. Neurochem. 27:63–69.

    PubMed  Google Scholar 

  52. Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigman, M. R., andMorell, P. 1976. Myelin synthesis during postnatal nutritional deprivation and subsequent rehabilitation. Brain Res. 107:257–273.

    PubMed  Google Scholar 

  53. Downes, C. P. 1982. Receptor-stimulated inositol phospholipid metabolism in the central nervous system. Cell Calcium 3:413–428.

    PubMed  Google Scholar 

  54. Nijjar, M. S., andHawthorne, J. N. 1977. Purification and properties of polyphosphoinositide phosphomonoesterase from rat brain. Biochim. Biophys. Acta 480:390–402.

    PubMed  Google Scholar 

  55. Irvine, R. F., Letcher, A. J., andDawson, R. M. C. 1984. Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochem. J. 218:177–185.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananth, U.S., Ramakrishnan, C.V. & Hauser, G. Effects of pre-weaning undernutrition and post-weaning rehabilitation on polyphosphoinositide pools in rat brain regions. Neurochem Res 11, 1383–1395 (1986). https://doi.org/10.1007/BF00966218

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966218

Keywords

Navigation