Log in

Interplane relaxation and the bilayer coupling in Y2Ba4Cu7O15

  • Magnetism
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The origin of the spin gap in the underdoped cuprate superconductors is still mysterious. Experimental evidence from neutron scattering and NMR experiments indicates that the spin gap might be present only in the bilayer compounds. A naive calculation for a two plane Heisenberg model locates the order-disorder transition only for very large exchange coupling between the bilayers. We propose a interplane relaxation experiment which might quantitatively estimate the strength of the bilayer coupling. We make detailed predictions for the size and the temperature dependence of the interplane relaxation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett.60, 1057 (1988) and S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev.B 39, 7443 (1988).

    Google Scholar 

  2. A. J. Millis and H. Monien, Phys. Rev. Lett.70, 2810 (1993).

    Google Scholar 

  3. A. Sokol and D. Pines, Phys. Rev. Lett.71, 2813 (1993).

    Google Scholar 

  4. S. Sachdev and J. Ye, Phys. Rev. Lett.69, 2411 (1992).

    Google Scholar 

  5. A. V. Chubukov, S. Sachdev, and A. Sokol, Phys. Rev.B 49, 9052 (1994) and A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev.B 49, 11919 (1994).

    Google Scholar 

  6. A. Sokol, R. L. Glenister, and R. R. P. Singh, Phys. Rev. Lett.72, 1549 (1994).

    Google Scholar 

  7. A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett.72, 2777 (1994).

    Google Scholar 

  8. J. M. Tranquadaet al., Phys. Rev.B 46, 5561 (1992).

    Google Scholar 

  9. K. Hida, J. Phys. Soc. Jpn.61, 1013 (1992).

    Google Scholar 

  10. L. B. Ioffe, A. I. Larkin, A. J. Millis and B. L. Altshuler, JETP Lett.59, 65 (1994)

    Google Scholar 

  11. M. U. Ubbens and P. A. Lee, Phys. Rev.49, 6853 (1994) and M. U. Ubbens and P. A. Lee, Phys. Rev.B50, 438 (1994).

    Google Scholar 

  12. M. J. Lercher and J. M. Wheatley, Phys. Rev.B49, 736 (1994)

    Google Scholar 

  13. R. Stern, M. Mali, I. Mangelschots, J. Roos, and D. Brinkmann, J.-Y. Genoud, T. Graf, and J. Mueller, Phys. Rev.B50, 426 (1994)

    Google Scholar 

  14. C. H. Pennington and C. P. Slichter, Phys. Rev. Lett.66, 381 (1991).

    Google Scholar 

  15. A. J. Millis, H. Monien, and D. Pines, Phys. Rev.B 42, 996 (1991).

    Google Scholar 

  16. K. Hida, J. Phys. Soc. Jpn.59, 2230 (1990).

    Google Scholar 

  17. A. J. Millis and H. Monien, Physical ReviewB, in print.

  18. A. W. Sandvik, J. Phys.A25, 3667 (1992).

    Google Scholar 

  19. R. Stern and M. Mali, unpublished

  20. O. K. Andersen, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monien, H., Sandvik, A.W. Interplane relaxation and the bilayer coupling in Y2Ba4Cu7O15 . J Low Temp Phys 99, 343–348 (1995). https://doi.org/10.1007/BF00752306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752306

Keywords

Navigation