Log in

Synthesis, structure, and rearrangements of new tricarbonylchromium complexes of substituted heptalenes

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Reactions of 1,2,5,6,8,10-hexamethylheptalene (1) and its bond isomer, 1,4,5,6,8,10-hexamethylheptalene (2), with tricarbonylchromium complexes L{in3}Cr(CO){in3} (L=NH{in3} and Py) have been investigated. Thermodynamically less stable complex 1 exhibits higher reactivity with respect to Py{in3}Cr(CO){in3}/BF{in3} · Et{in2}O under the conditions of Öfele's reaction than complex2. At 10–30 °C, the Cr(CO){in3} group is coordinated to the asymmetrically substituted ring, which is accomplished by the shift of double bonds in the ligand, to afford tricarbonyl-[1,4,5,6,8,10-hexamethyl-η{su6}-(10a, 1–5)heptalene]-chromium (6) as the only mononuclear complex. Under more drastic conditions (Raush's reaction, 80 °C),1 ↔ 2 interconversion proceeds faster than the reaction of individual bond isomers with coordinatively unsaturated “hot” particles (solv){inn}Cr(CO){in3}. In this case, all of the four possible isomeric mononuclear complexes (6–9) and two binuclear complexes (10 and 11) are formed. The structures of complexes 6–11 have been studied by NMR and mass spectrometry, the structure of6 has been established by X-ray diffraction analysis. Heating a solution of6 in octane at 115 °C results in the isomerization of6 into complex7 through the intracycle 1,2-shift of the Cr(CO){in3} group and also in its conversion into complex8, which is the first example of interring η{su6}→η{su6}-haptotropic rearrangement in nonplanar seven-membered π-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Dauben and D. J. Bertelli,J. Am. Chem. Soc., 1961.83, 4659.

    Google Scholar 

  2. E. Vogel. H. Konsigshofen, J. Wassen, K. Mullen, and J. F. M. Oth,Angew. Chem. Int. Ed. Engl., 1974,13, 732.

    Google Scholar 

  3. H. J. Lindner and B. Kitshke,Angew. Chem. Int. Ed. Engl., 1976,15, 106.

    Google Scholar 

  4. J. Stegemann and H. J. Lindner,Tetrahedron Lett., 1977, 2515.

  5. K. Hafner and G. L. Knaup,Tetrahedron Lett., 1986,27, 1665.

    Google Scholar 

  6. K. Hafner, N. Hock, G. L. Knaup, and K.-P. Meinhardt,Tetrahedron Lett., 1986,27, 1669.

    Google Scholar 

  7. J. F. M. Oth, K. Mullen, H. Konigshofen, J. Wassen, and E. Vogel,Helv. Chim. Acta, 1974,57, 2387.

    Google Scholar 

  8. K. Hafner, G. L. Knaup, H. J. Lindncr. and H.-C. Floter,Angew. Chem. Int. Ed. Engl., 1985,24, 212.

    Google Scholar 

  9. G. Gottarelli, H.-J. Hansen, G. P. Spada, and R. H. Weber,Helv. Chim. Acta. 1987,70, 430.

    Google Scholar 

  10. R. H. Weber. P. Brugger, T. A. Jenny, and H.-J. Hansen,Helv. Chim. Acta. 1987,70, 742.

    Google Scholar 

  11. R. H. Weber, P. Brugger, W. Arnold, P. Schonholzer, and H.-J. Hansen,Helv. Chim. Acta. 1987,70, 1439.

    Google Scholar 

  12. K. Hafner, G. L. Knaup, and H. J. Lindner,Bull. Chem. Soc. Jpn., 1988,61, 155.

    Google Scholar 

  13. W. Bernhard, P. Brugger, J. J. Daly, G. Englert, P. Schonholzer, and H.-J. Hansen.Helv. Chim. Acta, 1985,68, 1010.

    Google Scholar 

  14. E. Vogel, D. Kerimis, N. T. Allison, R. Zellerhoff, and J. Wassen,Angew. Chem. Int. Ed. Engl., 1979,18, 545.

    Google Scholar 

  15. J. Stegeman and H. J. Lindner,J. Organomet. Chem., 1979,166, 223.

    Google Scholar 

  16. K. Mullen, N. T. Allison. J. Lex, H. Schmickler, and E. Vogel,Tetrahedron, 1987,43, 3225.

    Google Scholar 

  17. C. E. Keller, G. F. Emerson, and R. Pettit,J. Am. Chem. Soc. 1965,87, 1388.

    Google Scholar 

  18. M. I. Bruce, M. Cooke, and M. Green,J. Organomet. Chem., 1968,13, 227.

    Google Scholar 

  19. J. Campbell, C. A. Fyfe, and E. Maslowsky,J. Am. Chem. Soc., 1972,94, 2690.

    Google Scholar 

  20. K. Ofele,Chem. Ber., 1966,99, 1752.

    Google Scholar 

  21. M. D. Rausch, G. A. Moser, and E. J. Zaiko,J. Organomet. Chem., 1970,23, 185.

    Google Scholar 

  22. M. Louer, G. Simonneaux, and G. Jaonen,J. Organomet. Chem., 1979,164, 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2220–2226, December, 1994.

We would like to thank N. S. Kulikov for measuring mass spectra and L. A. Aslanov for helpful discussion of the results of X-ray diffraction analysis.

The Research Group from the Moscow State University gratefully acknowledges the support of this work by the International Science Foundation (Grant No. MQ 5000) and the Russian Foundation for Basic Research (Project No. 94-03-08325).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustynyuk, Y.A., Trifonova, O.I., Yatsenko, A.V. et al. Synthesis, structure, and rearrangements of new tricarbonylchromium complexes of substituted heptalenes. Russ Chem Bull 43, 2100–2106 (1994). https://doi.org/10.1007/BF00700179

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00700179

Key words

Navigation