Log in

Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Laboratory and theoretical studies have been made of the effects of ultraviolet photolysis of interstellar grain mantles which consist of combinations of hydrogen, oxygen, carbon and nitrogen — ‘dirty ice’. It is shown that processes involving photolysis (photoprocessing) of interstellar grains are important during most of their lifetime even including the time they spend in dense clouds. A laboratory designed to simulate the interstellar conditions is described. This is the first time such a laboratory has been able to provide results which may be directly scaled to the astrophysical situations involving interstellar grains and their environment. The evolution of grain analogs is followed by observing the infrared absorption spectra of photolyzed samples of ices deposited at 10 K. The creation and storage of radicals and the production of molecules occur as a result of reactions within the solid. A large number of molecules and radicals observed in the interstellar gas appear in the irradiated ices. Energy released during warm-up is seen from visible luminescence and inferred from vapor pressure enhancement which occurs during warming of photolyzed samples relative to unphotolyzed samples. The evolution of a grain and its role as a source as well as a sink of molecules is pictured as a statistical process within dense clouds. The gradual accretion on and photolysis of an individual grain provides the stored chemical energy the release of which is sporadically triggered by relatively mild events (such as low velocity grain-grain collisions) to produce the impulsive heating needed to eject or evaporate a portion of the grain mantle. An extremely complex and rather refractory substance possessing the infrared signatures of amino groups and carboxylic acid groups and having a maximum mass of 514 amu has been produced at a rate corresponding to a mass conversion rate of interstellar grains of between 2% and 20% in 107 yr. The shape and position of the astronomically observed 3.1 μm band is duplicated in the laboratory and is shown to be a natural consequence of the processing of grain mantles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allamandola, L. J., Greenberg, J. M. and Norman, C. A.: 1979,Astron. Astrophys. (in press).

  • Bash, F.: 1979,Astrophys. J. (in press).

  • Bass, A. M. and Broida, H. P. (eds.): 1960,Formation and Trap** of Free Radicals, Academic Press, New York.

    Google Scholar 

  • Buontempo, U.: 1972,Phys. Letters 42A, 17.

    Google Scholar 

  • Calvert, J. G. and Pitts, J. M. Jr: 1966,Photochemistry. John Wiley and Sons,

  • Capps, R. W., Gillett, F. C. and Knacke, R. F.: 1978,Astrophys. J. 226, 863.

    Google Scholar 

  • Carey, F.: 1970,Knickerbocker News, Associated Press, Albany, New York, Dec. 31, 1.

    Google Scholar 

  • Cohen, M.: 1976,Astrophys. J. 203, 169.

    Google Scholar 

  • Danielson, E. E., Woolf, N. J. and Gaustad, J. E.: 1965,Astrophys. J. 141, 116.

    Google Scholar 

  • Donn, B.: 1960 in A. M. Bass and H. P. Broida (eds.),Formation and Trap** of Free Radicals, Chapter 11, Academic Press, New York, p. 347.

    Google Scholar 

  • Dubost, H.: 1976,Chem. Phys. 12, 139.

    Google Scholar 

  • Ewing, G. E., Thompson, W. E. and Pimentel, G. C.: 1960,J. Chem. Phys. 32, 927.

    Google Scholar 

  • Fehsenfeld, F. C., Evenson, K. M. and Broida, H. P.: 1964,National Bureau of Standards Report 8701.

  • Fehsenfeld, F. C., Evenson, K. M. and Broida, H. P.: 1965,Rev. Scient. Instru. 36, 294.

    Google Scholar 

  • Field, G. B.: 1978, in T. Gehrels (ed.),Protostars and Planets, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Gammon, R. H.: 1978,Chem. Engng. News 56, No. 41, 21.

    Google Scholar 

  • Gillett, F. C., Jones, T. W., Merrill, K. M. and Stein, W. A.: 1975,Astron. Astrophys. 45, 77.

    Google Scholar 

  • Greenberg, J. M.: 1963,Ann. Rev. Astron. Astrophys. 15, 267.

    Google Scholar 

  • Greenberg, J. M.: 1971,Astron. Astrophys. 12, 240.

    Google Scholar 

  • Greenberg, J. M.: 1973, in M. A. Gordon and L. E. Snyder (eds.)Molecules in the Galactic Environment, John Wiley and Sons, p. 93.

  • Greenberg, J. M.: 1976,Astrophys. Space Sci. 39, 9.

    Google Scholar 

  • Greenberg, J. M.: 1978, in A. J. M. McDonnell (ed.),Cosmic Dust, Chapter 4, Wiley, London, p. 187.

    Google Scholar 

  • Greenberg, J. M.: 1979a,The Moon and Planets 20, 15.

    Google Scholar 

  • Greenberg, J. M.: 1979b, in B. Westerlund (ed.),Stars and Star Systems, IAU 4th European Regional Meeting in Astronomy, Reidel, Dordrecht, p. 173.

    Google Scholar 

  • Greenberg, J. M.: 1979c, in W. I. Axford, H. Fechtig, J. Rahe (eds.),ESA Workshop on Cometary Missions, Bamberg, p. 119.

  • Greenberg, J. M., Yencha, A. J., Corbett, J. W. and Frisch, H. L.: 1972,Mem. Roy. Soc. Sciences de Liège, 6e série, Tome III, 425.

    Google Scholar 

  • Hallam, H. E.: 1973,Vibrational Spectroscopy of Trapped Species, John Wiley and Sons, New York.

    Google Scholar 

  • Habing, H. J.: 1968,Bull. Astron. Inst. Ned. 19, 421.

    Google Scholar 

  • Harris, D. H., Woolf, N. J. and Rieke, G. H.: 1978,Astrophys. J. 226, 829.

    Google Scholar 

  • Harteck, P. and Oppenheimer, F.: 1932,Z. Phys. Chemie B16, 77.

    Google Scholar 

  • Harteck, P., Reeves Jr, R. R. and Thompson, B. A.: 1964,Z. Naturforschg. 19a, 2.

    Google Scholar 

  • Herzberg, G. and Ramsay, D. A. 1955,Proc. Roy. Soc. (Lond.) A233, 34.

    Google Scholar 

  • Hong, S. S.: 1975,Unified model of interstellar grains, Ph.D. Thesis, State Univ. of New York at Albany.

  • Hong, S. S. and Greenberg, J. M.: 1978,Astron. Astrophys. 70, 695.

    Google Scholar 

  • Hunter, C. E. and Donn, B.: 1971,Astrophys. J. 167, 71.

    Google Scholar 

  • Jackson, J. L.: 1959a,J. Chem. Phys. 31, 154.

    Google Scholar 

  • Jackson, J. L.: 1959b,J. Chem. Phys. 31, 722.

    Google Scholar 

  • Johns, J. W. C., Priddle, S. H. and Ramsay, D. A.: 1963,Discussions Faraday Soc. 35, 90.

    Google Scholar 

  • Lindblad, B.: 1935,Nature 135, 133.

    Google Scholar 

  • Merrill, K. M., Russell, R. W. and Soifer, B. T.: 1976,Astrophys. J. 207, 763.

    Google Scholar 

  • Meyer, B.: 1971,Low Temperature Spectroscopy, Elsevier Press, New York.

    Google Scholar 

  • Miller, S.: 1953,Science 117, 528.

    Google Scholar 

  • Milligan, D. E. and Jacox, M. E.: 1964,J. Chem. Phys. 41, 3032.

    Google Scholar 

  • Milligan, D. E. and Jacox, M. E.: 1965,J. Chem. Phys. 43, 4487.

    Google Scholar 

  • Milligan, D. E. and Jacox, M. E.: 1971,J. Chem. Phys. 54, 927.

    Google Scholar 

  • Mitchell, G. F., Ginsburg, J. L. and Kuntz, P. J.: 1978,Astrophys. J. Suppl. 38, 39.

    Google Scholar 

  • Mukai, T., Mukai, S., and Noguchi, K.: 1978,Astrophys. Space Sci. 53, 77.

    Google Scholar 

  • Nibler, J. W.: 1976, Private communication;see also Lesiecki, M. L.: 1975,Spectroscopic studies of high temperature matrix isolated molecules, Ph.D. Dissertation, Oregon State University.

  • Norman, C. A. and Silk, J.: 1979,Astrophys. J. (in press).

  • Okabe, H.: 1963,J. Opt. Soc. Am. 54, 478.

    Google Scholar 

  • Oort, J. H.: 1974, in J. R. Shakeshaft (ed.),Recent Studies of Bright Galaxies, IAU Symp. No. 58, Reidel, Dordrecht, p. 375.

    Google Scholar 

  • Pimentel, G. C., Bulanin, M. O. and van Thiel, M.: 1962,J. Chem. Phys. 36, 500.

    Google Scholar 

  • Pugh, L. A. and Rao, K. N.: 1976, in K. Rao (ed.),Molecular Spectroscopy, Modern Research, Academic Press, New York, Vol. II, p. 165.

    Google Scholar 

  • Salpeter, E. E.: 1977,Ann. Rev. Astron. Astrophys. 15, 267.

    Google Scholar 

  • Samson, J. A. R.: 1967,Techniques of Vacuum Ultraviolet Spectroscopy, Wiley, New York, p. 213.

    Google Scholar 

  • Sandell, G.: 1978,Astron. Astrophys. 69, 85.

    Google Scholar 

  • Slanger, T. G., Sharpless, R. L., Black, G., Filseth, S. V.: 1974,J. Chem. Phys. 61, 5022.

    Google Scholar 

  • Snyder, L. E., Buhl, D., Zuckerman, B., and Palmer, P.: 1969,Phys. Rev. Letters 22, 679.

    Google Scholar 

  • Spitzer, L. Jr.: 1969,Diffuse Matter in Space, Wiley, New York.

    Google Scholar 

  • ter Haar, D.: 1943,Bull. Ast. Inst. Ned. 10, No. 361, 1.

    Google Scholar 

  • Thomas, Jr., S. G. and Guillory, W. A.: 1973,J. Phys. Chem. 77, 2469.

    Google Scholar 

  • Thompson, B. A., Reeves, Jr, R. R. and Harteck, P.: 1965,J. Phys. Chem. 69, 3964.

    Google Scholar 

  • van de Hulst, H. C.: 1943,Ned. Tijdschr. v. Natuurkunde 10, 251.

    Google Scholar 

  • van de Hulst, H. C.: 1949,Recherche Astron. Observatoire Utrecht 11, part 2.

    Google Scholar 

  • van Thiel, M., Becker, E. D. and Pimentel, G. C.: 1957,J. Chem. Phys. 27, 486.

    Google Scholar 

  • Warneck, P.: 1962,Appl. Optics 1, 721.

    Google Scholar 

  • Watson, W. D.: 1976,Rev. Mod. Phys. 48, 513.

    Google Scholar 

  • Witt, A. N. and Johnson, M. W.: 1973,Astrophys. J. 181, 363.

    Google Scholar 

  • Witt, A. N. and Lillie, C. F.: 1973,Astron. Astrophys. 25, 371.

    Google Scholar 

  • Zuckerman, B. and Evans, N. J. II: 1974,Astrophys. J. 192, L149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagen, W., Allamandola, L.J. & Greenberg, J.M. Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications. Astrophys Space Sci 65, 215–240 (1979). https://doi.org/10.1007/BF00643502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00643502

Keywords

Navigation