Log in

Early detection of cerebral infarction by31P spectroscopic imaging

  • Case Reports
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

Recent advances in magnetic resonance spectroscopy permit noninvasive study of brain metabolism in vivo,31P spectroscopic imaging being the method for evaluation of localized phosphorous metabolism. Experimentally, an ischemic-hypoxic brain insult is characterized by depletion of high energy metabolites. These changes are seen immediately after an ischemic insult. We had the opportunity of carrying out31P spectroscopic imaging of hyperacute cerebral infarction, while MRI and CT were negative. Cerebral infarction of the middle cerebral artery territory was suggested by31P spectroscopic imaging, which was closely consistent with a later-develo** region of low density on CT. In cerebral infarction, early detection of the lesion is a useful pointer to the patient's prognosis, making31P spectroscopic imaging a potential tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brant-Zawadzki M, Barkowski HM, Pitts LH, Hylton NM, Nishimura MC, Crooks LE (1984) NMR in experimental cerebral edema: Value of T1 and T2 calculations. AJNR 5:125–129

    Google Scholar 

  2. Brant-Zawadzki M, Weinstein P, Bartkowski H, Moseley M (1987) MR imaging and spectroscopy in clinical and experimental cerebral ischemia: a review. AJNR 8:39–48

    Google Scholar 

  3. Bryan RN, Willcott MR, Schneiders NJ, Ford JJ, Derman HS (1983) Nuclear magnetic resonance. Evaluation of stroke. A preliminary report. Radiology 149:189–192

    Google Scholar 

  4. DeWitt LD, Buonanno FS, Kistler JP, Brady TJ, Pykett IL, Goldman MR, Davis KR (1984) Nuclear magnetic resonance imaging in evaluation of clinical stroke syndromes. Ann Neurol 16: 535–545

    Google Scholar 

  5. Eguchi T, Iai S, Nagane M, Taniguchi T, Kawamoto S, Ouchi T, Umeda M (1988) The diagnosis of the pathological conditions of cerebral infarction in an acute stage through multi-modality examinations including MRS. Prog CT 10:509–515

    Google Scholar 

  6. Fujimoto T, Tsuji T, Nakano T, Noguchi S, Uchida T, Okada A, Sasahira M, Uwata O, Watanabe K, Osame M, Asakura T, Igata A, Miyazaki T, Hasegawa J, Iriguchi N (1988)1H imaging and31P spectroscopic imaging in Alzheimer's disease. Abstracts of International symposium MRI update 1988. The second Kumamoto University — UCLA Radiology Symposium, Kumamoto, Japan, p 93

  7. Fujimoto T, Noguchi S, Nakano T, Okada A, Sasahira M, Uwata O, Watanabe K, Osame M, Igata A, Asakura T (1989) MRS of Alzheimer's disease in presenile stage. Abstracts of the 12th Annual Meeting of the Japanese Society of CNS Computerized Tomography. Kagoshima, Japan, p 116

  8. Fukuda O, Sato S, Suzuki T, Endo S, Takaku A (1989) MRI of acute cerebral infarction. Neurol Surg 17:31–36

    Google Scholar 

  9. Go KG, Edzes HT (1975) Water in brain edema. Observations by the pulsed nuclear magnetic resonance technique. Arch Neurol 32:462–465

    Google Scholar 

  10. Inoue Y, Takemoto K, Miyamoto T, Yoshikawa N, Taniguchi S, Saiwai S, Nishimura Y, Komatsu T (1980) Sequential computed tomography scans in acute cerebral infarction. Radiology 135: 655–662

    Google Scholar 

  11. Kato H, Kogure K, Ohotomo H, Izumiyama M, Tobita M, Matsui S, Yamamoto E, Kohno H, Ikebe Y, Watanabe T (1986) Magnetic resonance imaging of experimental cerebral ischemia: correlations between NMR parameters and water content. Brain Nerve 38:295–302

    Google Scholar 

  12. Lenkinski RE, Holland GA, Allman T, Vogele K, Kresel HY, Grossman RI, Charles HC, Engeseth HR, Flamig D, Macfall JR (1988) Integrated MR imaging and spectroscopy with chemical shift imaging of 31-P at 1.5 T: Initial clinical experience. Radiology 169:201–206

    Google Scholar 

  13. Maudsley AA, Hilal SK, Simon HE, Wittekoek S (1984) In vivo MR spectroscopic imaging with P-31. Radiology 153:745–750

    Google Scholar 

  14. Miyazaki T, Hasegawa J, Iriguchi N, Takeda J (1988) 31 P-SIDAC. Jpn J Magn Reson Med 8 [Suppl 2]:274

    Google Scholar 

  15. Miyazaki T, Yamamoto T, Iriguchi N, Ueshima Y, Hasegawa J, Yamai S, Hikida K, Manabe A, Toyoshima H, Maki T (1989) Spectroscopic imaging by dephasing amplitude changing (SIDAC). Radiat Med 1:1–5

    Google Scholar 

  16. Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Koizuka I, Takada S, Watari H (1983) In vivo31P NMR studies on cerebral infarction using topical magnetic resonance (TMR) —Time course of high energy phosphorus compunds content in ischemic and recirculated brain. Brain Nerve 35:603–609

    Google Scholar 

  17. Sasahira M, Uchimura K, Kawahara Y, Okada A, Fujimoto T, Nakano T, Asakura T, Osame M, Igata A, Miyazaki T, Hasegawa J, Iriguchi N (1988) Phosphorous spectroscopic imaging of human brain. Abstracts of International symposium MRI update 1988. The second Kumamoto University — UCLA Radiology Symposium, Kumanoto, Japan, p 94

  18. Sasahira M, Uchimura K, Okada A, Fujimoto T, Asakura T, Kawahara Y, Osame M, Miyazaki T, Hasegawa J, Iriguchi N (1989) Clinical analysis of31P spectroscopic imaging of brain tumors. Abstracts of the 12th Annual Meeting of the Japanese Society of CNS Computerized Tomography, Kagoshima, Japan, p 191

  19. Sasahira M, Uchimura K, Kawahara Y, Fujimoto T, Asakura T, Osame M, Miyazaki T, Hasegawa J, Iriguchi N (1989)31P spectroscopic imaging of intracerebral hemorrhage. Jpn J Magn Reson Med 9 [Suppl 1]:143

    Google Scholar 

  20. Sasahira M, Uchimura K, Fujimoto T, Asakura T, Iriguchi N (1989) Phosphorous spectroscopic imaging of human brain tumors. Magn Reson Imaging 7 [Suppl 1]:130

    Google Scholar 

  21. Sipponen JT, Kaste M, Ketonen L, Sepponen RE, Katevuo K, Sivula A (1983) Serial nuclear magnetic resonance (NMR) imaging in patients with cerebral infarction. J Comput Assist Tomogr 7:585–589

    Google Scholar 

  22. Uchimura K, Sasahira M, Kawahara Y, Okada A, Fujimoto T, Asakura T, Osame M (1989)31P-chemical shift imaging of cerebral infarction and cerebral hemorrhage — evaluation of energic metabolism using SIDAC method. Abstracts of the 12th Annual Meeting in the Japanese Society of CNS Computerized Tomography, Kagoshima, Japan, p 185

  23. Uchimura K, Sasahira M, Kawahara Y, Okada A, Fujimoto T, Asakura T, Osame M, Miyazaki T, Hasegawa J, Iriguchi N (1989)31P chemical shift imaging of the human brain, with special reference to acute large cerebral infarction. Igaku no Ayumi 148:369–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasahira, M., Uchimura, K., Yatsushiro, K. et al. Early detection of cerebral infarction by31P spectroscopic imaging. Neuroradiology 32, 43–46 (1990). https://doi.org/10.1007/BF00593940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00593940

Key words

Navigation