Log in

Hydriding mechanism of Mg2Ni in the presence of oxygen impurity in hydrogen

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the case where oxygen is present as an impurity in hydrogen, a hydriding mechanism is proposed along with hydriding cycling of the Mg2Ni alloy. The large chemical affinity of magnesium for oxygen leads to the selective oxidation of magnesium and to the segregation of the more noble nickel component. The consequence is a progressive decrease in hydrogen storage capacity of Mg2Ni along with hydriding cycling. The segregated nickel provides active sites for chemisorption of oxygen and hydrogen. The chemisorbed oxygen accelerates the surface segregation of nickel or can form water vapour with hydrogen, or (least favourably) directly oxidizes nickel. The chemisorbed hydrogen can form water vapour with oxygen, can hydride Mg2Ni or can reduce the nickel oxide eventually formed. All these reactions are exothermic, causing an increase in temperature during the hydriding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sieler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel andF. Stucki,J. Less-Common Metals 73 (1980) 193.

    Google Scholar 

  2. O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn, International Series on Materials Science and Technology, Vol. 24 (Pergamon Press, Oxford, 1979).

    Google Scholar 

  3. D. R. Gaskell, “Introduction to Metallurgical Thermodynamics” (McGraw-Hill-Kogakusha, Tokyo, 1973) p. 126.

    Google Scholar 

  4. Metals Handbook, 8th Edn, Vol. 8 (American Society for Metals, Metals Park, Ohio, 1973).

  5. L. Schlapbach, A. Seiler, F. Stucki andH. C. Siegmann,J. Less-Common Metals 73 (1980) 145.

    Google Scholar 

  6. M. Y. Song, M. Pezat, B. Darriet andP. Hagenmuller,J. Solid State Chem. 56 (1985) 191.

    Google Scholar 

  7. I. Langmuir,J. Amer. Chem. Soc. 38 (1916) 2221.

    Google Scholar 

  8. B. M. W. Trapnell,Proc. R. Soc. A218 (1953) 566.

    Google Scholar 

  9. D. Brennan, D. G. Hayward andB. M. W. Trapnell,ibid. A256 (1960) 81.

    Google Scholar 

  10. J. K. Roberts,ibid. A152 (1935) 464.

    Google Scholar 

  11. E. A. Gulbransen andJ. W. Hickman,Trans. AIME 171 (1947) 306.

    Google Scholar 

  12. O. Beeck, “Advances in Catalysis”, Vol. 2 (Academic Press, 1950) p. 151.

  13. O. Beeck andA. W. Ritchie,Discuss. Faraday Soc. 8 (1950) 159.

    Google Scholar 

  14. J. J. Reilly andR. H. Wiswall, Jr,Inorg. Chem. 7 (1968) 2254.

    Google Scholar 

  15. G. C. Bond, “Catalysis by metals” (Academic Press, London, 1962) p. 76–78.

    Google Scholar 

  16. Benton andEmmett,J. Amer. Chem. Soc. 48 (1926) 632.

    Google Scholar 

  17. Donelly,J. Chem. Soc. (1929) 2438.

  18. Gallo,Ann. Chim. Applicata. 17 (1927) 535.

    Google Scholar 

  19. Saito,Sci. Rep. Tohoku Univ. 16 (1927) 37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Pezat, M., Darriet, B. et al. Hydriding mechanism of Mg2Ni in the presence of oxygen impurity in hydrogen. J Mater Sci 20, 2958–2964 (1985). https://doi.org/10.1007/BF00553060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553060

Keywords

Navigation